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Janki Bhimani Biography 
 
Dr. Janki Bhimani is a full-time, nine-month, tenure-earning faculty member, currently holding the position 

of Assistant Professor in the Knight Foundation School of Computing and Information Sciences (KFSCIS) at Florida 
International University (FIU), an R1 public research university located in Miami, Florida. Prior to joining FIU in 
2019, Dr. Bhimani served as an Instructor at Northeastern University. She also held the position of Performance 
Architect, interning for three consecutive years at Samsung Semiconductors in San Jose. She successfully earned her 
Ph.D. in 2019 from the Department of Electrical and Computer Engineering at Northeastern University in Boston, 
working under the supervision of Dr. Ningfang Mi. 

 
Dr. Bhimani's primary research interests span System Design, Storage Systems, Memory Management, 

Computer Architecture, Electronic Design Automation (EDA), Cloud Computing, Big Data, Modeling and 
Simulation, Resource Management, Capacity Planning, Machine Learning (ML), and High-Performance Computing 
(HPC). Leveraging her profound knowledge and extensive experience in new emerging non-volatile memories and 
flash-based devices, she has made significant contributions to the data storage management community. Recognized 
for her outstanding contributions, Dr. Bhimani has received numerous awards and accolades, including NSF CAREER 
Award, FIU Top Scholar in the research publication category, KFSCIS Excellence in Applied Research, and 
Distinguished Reviewer and Best Paper Awards from flagship conferences. She has also been honored with Quality 
Matters (QM) certification for the courses she meticulously designed. 

 
Dr. Janki Bhimani stands out as a distinguished researcher, having secured a remarkable $6 million in 

research funding from prestigious federal and state sources like NSF and Cyber Florida as well as industries such as 
Samsung Semiconductors. As the Principal Investigator, she led projects totaling $3 million. With a prolific research 
output, Dr. Bhimani has contributed significantly with 10 high impact journal articles, 35 peer-reviewed conference 
papers, 10 patents, and about 1000 citations. Her work has resulted in publications in high-impact journals such as 
IEEE Transactions on Cloud Computing (TCC), IEEE Transactions on Vehicular Technology (TVT), ACM 
Transactions on Storage (TOS), IEEE Transactions on Computers (TC), ACM Transactions on Modeling and 
Computer Simulation (TOMACS), IEEE Transactions on Big Data (TBDATA), and IEEE Transactions on Multi-
Scale Computing Systems (TMSCS) and highly selective conferences and workshops such as DAC, HPCA, DATE, 
CLOUD, HPDC, and HotStorage. She has successfully graduated a Ph.D. student to become a tenure track Assistant 
Professor at Missouri State University and currently supervises a diverse group of Ph.D., M.S., and undergraduate 
students. In the past five years, she has advised eight Hispanic students, one Asian American student, and three women. 
Dr. Bhimani's collaborative spirit is evident in her partnerships with institutions like the University of Maryland, 
University of Chicago, Argonne National Lab, Syracuse University, and industry leaders such as Samsung 
Semiconductors.  

 
As an educator, she excels in teaching, reflected in an impressive student feedback rating of 4.13/5, Quality 

Matters (QM) certification, and impact-driven teaching methodologies. She has taught various core and intensive 
graduate and undergraduate courses, including Storage Systems and Data Structures. She has secured Quality Matters 
(QM) certification for all her online courses and led curriculum updates to design and integrate a Data Structures 
course taught in multiple programming languages. She has implemented module-based content distribution with live 
feedback and class projects on the Chameleon cloud platform. Dr. Bhimani's commitment extends beyond research 
and teaching to service roles, where she has made substantial contributions to FIU's growth, serving as a member of 
the Faculty Hiring Committee, Awards Committee, CEC Faculty Council, Graduate Committee, Subject area 
coordinator, Graduate Program Committee, DEI Committee, and as Seminar Series Coordinator. Dr. Bhimani has 
taken on various leadership roles, including associate editor for ACM journals, general chair, program committee 
chair, track chair, publicity chair, and session chair for conferences such as CCGRID, ACM HotStorage, and HPDC. 
She has provided extensive service as a TPC member for top conferences such as USENIX FAST, IPDPS, and 
CLOUD. Her dedication also encompasses voluntary service at the Center for Women and Gender Studies, 
showcasing a holistic approach to academic and societal advancement. She keeps her skills updated through active 
participation in events at FIU, including the STRIDE workshop for hiring, tenure, and promotion, the Diversity 
Advocate workshop, and the Bystander Leadership workshop. 



Janki Bhimani

Assistant Professor, Knight Foundation School of Computing and Information Science

Florida International University

jbhimani@fiu.edu · Linkedin · Google Scholar · Mobile: +1(857)991-9868
(Please visit my Website for the most updated information.)

RESEARCH INTERESTS

System Design, Memory Management; Storage Systems; Computer Architecture; Optimization,
Modeling, and Prediction; Resource Management; Cloud Computing; Machine Learning; Ca-
pacity Planning; High Performance Storage and Computing; Emerging Non-Volatile Memories;

HIGHLIGHTS

Research:

[Grants.] • Grants: Secured $6 million in research funding from NSF, Cyber Florida, and
Samsung Semiconductors with $3 million as PI. Received NSF CAREER award in 2024.
Other three proposals under review. Future plans include applying for large collaborative
grants from DOE, NSF, and AFOSR.

[Awards, Publications, and Patents.] Contributed significantly with 10 high-impact journal
articles, 35 peer-reviewed conference papers, 10 patents as lead inventor, and over 900
citations. Recognized with Awards including FIU Top Scholar, KFSCIS Excellence in
Applied Research, Distinguished Reviewer, and Best Paper Awards.

[Student Advising/Mentoring.] Graduated one Ph.D. student, who is Assistant Professor,
mentored eight Hispanics, one Asian American, and three women in the past five years.

[Collaborations.] Established collaborations with institutions like the University of Maryland,
University of Chicago, Argonne National Lab, Syracuse University, and industry leaders Sam-
sung Semiconductors and IBM Research.

Teaching:

Designed and taught three core courses, achieving an average student feedback rating
of 4.13/5. Secured Quality Matters (QM) certification for courses. Led curriculum
update e↵orts to design and integrate a Data Structures course taught in multiple programming
languages. Implemented module-based content distribution with live feedback, and class
projects on Chameleon cloud platform.

Service:

Contributed to FIU’s growth, serving on the Faculty Hiring Committee, Awards Com-
mittee, CEC Faculty Council, Subject area coordinator, Graduate Committee, DEI
Committee, and as Seminar Series Coordinator. Led roles such as Associate Editor
for ACM TACO Journal, General Chair and Publicity Chair for ACM HotStorage,
Program Committee Track Chair for CCGRID, and Poster Chair for HPDC. Extensive
service as a TPC member for conferences like USENIX FAST, IPDPS, CLOUD. Volunteering
at the Center for Women and Gender Studies. Received Grace Hopper Celebra-
tion of Women in Computing (GHC) Faculty Scholarship for two years and Certificate
of Completion from ASEE DELTA Junior Faculty Institute. Participated in STRIDE
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workshop for hiring, tenure, and promotion, Diversity Advocate workshop, and Bystander
Leadership workshop.

EDUCATION

Doctor of Philosophy (Ph.D.), Computer Engineering Aug 2019
Northeastern University, Boston, MA, USA
Dissertation: Enhancing E�ciency and Endurance of Flash-Based Storage for Big Data Pro-
cessing on Enterprise Cloud and Datacenter

Master of Science (M.S.), Computer Engineering Jan 2016
Northeastern University, Boston, MA, USA
M.S. research: FiM - Fine grained Model to Predict Heterogeneous Computing Platforms Per-
formance

Bachelor of Technology (B.Tech), Electrical & Electronics Engineering Aug 2013
GITAM University, Vishakhapatnam, India
Major: Robotics and Programming of Embedded Systems, Minor: Circuit Design, Power Man-
agement

FULL-TIME ACADEMIC EXPERIENCE

Assistant Professor Aug 2019 - Current
Knight Foundation School of Computing and Information Science
Florida International University, Miami FL, USA

PART-TIME ACADEMIC EXPERIENCE

Volunteering A�liated Faculty Aug 2019 - Current
Center for Women’s and Gender Studies (CWGS)
Florida International University, Miami FL, USA

Instructor Sep 2017 - Dec 2017
College of Engineering
Northeastern University, Boston MA, USA

Graduate Research and Teaching and Assistant May 2014 - Jun 2019
Khoury College of Computer Science and College of Engineering
Northeastern University, Boston MA, USA

Undergraduate Research Assistant Jul 2009 - Apr 2013
Electrical and Electronics Engineering
GITAM University, Vishakhapatnam, India

NON-ACADEMIC EXPERIENCE

Software Development Infrastructure Engineer May 2018 - Aug 2018
Samsung Semiconductors Inc. Research Lab, San Jose, CA, USA

Performance Engineer May 2017 - Aug 2017
Samsung Semiconductors Inc. Research Lab, San Jose, CA, USA
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Engineer - Performance Architect May 2016 - Aug 2016
Samsung Semiconductors Inc. Research Lab, San Jose, CA, USA

Student Chair May 2011 - May 2013
GITAM University Student Activity Center (GUSAC), India

IC Design Intern Jun 2012 - Jul 2012
Energy Options, Rajkot, India

NASA STEM Engagement May 2012 - Jun 2012
NASA’s John F. Kennedy Space Center, FL, USA

EMPLOYMENT RECORD AT FIU

Assistant Professor Aug 2019 - Current
School of Computing and Information Science
Florida International University, Miami FL, USA

Volunteering A�liated Faculty Aug 2019 - Current
Center for Women’s and Gender Studies (CWGS)
Florida International University, Miami FL, USA

PUBLICATIONS IN DISCIPLINE

(* Indicates an FIU student supervised by myself.)
Citation counts are taken from my Google Scholar Profile, which lists the following statistics:
Total citations: 978, h-index: 16, i10-index: 22.

[Total 45 - 20 FIU (13 with FIU students supervised by myself) and 25 Pre-FIU]

Selective Refereed Journal Publications

1. Danlin Jia, Li Wang, Natalia Valencia*, Janki Bhimani, Bo Sheng and Ningfang Mi.
Learning-based Dynamic Memory Allocation Schemes for Apache Spark Data Process-
ing. IEEE Transactions on Cloud Computing (TCC) 2023. Tier 1 Journal with impact
factor 11.1.

2. Ajinkya S Bankar, Shi Sha, Janki Bhimani, Vivek Chaturvedi, Gang Quan. Thermal
Aware System-Wide Reliability Optimization for Automotive Distributed Computing Ap-
plications. IEEE Transactions on Vehicular Technology (TVT) 2022. Tier 1 Journal with
impact factor 2.243.

3. Janki Bhimani, Zhengyu Yang, Jingpei Yang, Adnan Maruf*, Ningfang Mi, Rajinikanth
Pandurangan, Changho Choi, Vijay Balakrishnan. Automatic Stream Identification to
Improve Flash Endurance in Data Centers. ACM Transactions on Storage (TOS) 2021.
Tier 1 Journal with impact factor 1.59.

4. Janki Bhimani, Adnan Maruf*, Ningfang Mi, Rajinikanth Pandurangan, and Vijay Balakr-
ishnan. Auto-Tuning Parameters for Emerging Multi-Stream Flash-Based Storage Drives
Through New I/O Pattern Generations. IEEE Transactions on Computers (TC) 2020.
Tier 1 Journal with impact factor 3.131.

5. Janki Bhimani, Ningfang Mi, Miriam Leeser, and Zhengyu Yang, New Performance Mod-
eling Methods for Parallel Data Processing Applications, ACM Transactions on Modeling
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and Computer Simulation (TOMACS), 2019. DOI 10.1145/3309684. Tier 1 Journal with
impact factor 1.380.

6. Zhengyu Yang, Manu Awasthi, Mrinmoy Ghosh, Janki Bhimani, and Ningfang Mi, I/O
Workload Management for All-Flash Datacenter Storage Systems Based on Total Cost
of Ownership, IEEE Transactions on Big Data (TBDATA), Special Issue on the Integra-
tion of Extreme Scale Computing and Big Data Management and Analytics, 2018. DOI
10.1109/TBDATA.2018.2871114. Tier 1 Journal with impact factor 2.

7. Janki Bhimani, Zhengyu Yang, Ningfang Mi, Jingpei Yang, Qiumin Xu, Manu Awasthi,
Rajinikanth Pandurangan, and Vijay Balakrishnan, Docker Container Scheduler for I/O
Intensive Applications running on NVMe SSDs, IEEE Transactions on Multi-Scale Com-
puting Systems (TMSCS), 2018. DOI: 10.1109/TMSCS.2018.2801281. Tier 1 Journal with
impact factor 2.065.

8. Zhengyu Yang, Janki Bhimani, Yi Yao, Cho-Hsien Lin, Jiayin Wang, Ningfang Mi, and Bo
Sheng, AutoAdmin: Admission Control in YARN Clusters Based on Dynamic Resource
Reservation, Scalable Computing: Practice and Experience, Special Issue on Advances in
Emerging Wireless Communications and Networking (SCPE), 2018. Volume 19, Number
1, pp. 53–67.

9. Zhengyu Yang, Yufeng Wang, Janki Bhimani, Chiu C. Tan, and Ningfang Mi, EAD: Elas-
ticity Aware Deduplication Manager for Datacenters with Multi-tier Storage Systems, Clus-
ter Computing (CC), 2018. https://doi.org/10.1007/s10586-018-2141-z.

10. Zhengyu Yang, Janki Bhimani, Jiayin Wang, David Evans, and Ningfang Mi, Automatic
and Scalable Data Replication Manager in Distributed Computation and Storage Infras-
tructure of Cyber-Physical Systems, Scalable Computing: Practice and Experience, Special
Issue on Communication, Computing, and Networking in Cyber-Physical Systems (SCPE),
2018. Volume 18, Number 4, pp. 291–311.

Highly Selective Peer Reviewed Conference Publications
Acceptance rates below 30%

11. Manoj Saha*, Danlin Jia, Janki Bhimani and Ningfang Mi, MoKE: Modular Key-value
Emulator for Realistic Studies on Emerging Storage Devices, 2023 IEEE International
Conference on Cloud Computing (CLOUD’23), Hybrid Event, Chicago, IL, 2023.

12. Ziyang Jiao, Janki Bhimani, Bryan S. Kim, Wear Leveling in SSDs Considered Harmful,
2022 ACM Workshop on Hot Topics in Storage and File Systems (HotStorage ’22), Virtual.
(Best Paper Award)

13. Adnan Maruf*, Sashri Brahmakshatriya*, Baolin Li, Devesh Tiwari, Gang Quan and
Janki Bhimani, Do Temperature and Humidity Exposures Hurt or Benefit Your SSDs?,
2022 Design, Automation and Test in Europe Conference. The European Event for Elec-
tronic System Design and Test (DATE’22), Virtual. Acceptance Rate: 25%. (Best Paper
Award Nomination)

14. Adnan Maruf*, Ashikee Ghosh*, Janki Bhimani, Daniel Campello, Andy Rudo↵, Raju
Rangaswami, MULTI-CLOCK: Dynamic Tiering for Hybrid Memory Systems, 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA’22), Seoul,
South Korea, 2022. Acceptance Rate: 30%.
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15. Adnan Maruf*, Zhengyu Yang, Bridget Davis, Daniel Kim, Je↵rey Wong, Matthew Du-
rand, and Janki Bhimani, Understanding Flash-Based Storage I/O Behavior of Games,
2021 IEEE International Conference on Cloud Computing (CLOUD’21), Online Virtual
Congress, 2021. Acceptance Rate: 23.8%.

16. Janki Bhimani, Jingpei Yang, Ningfang Mi, Changho Choi, and Manoj Pravakar Saha*,
Fine-grained Control of Concurrency within KV-SSDs, 2021 14th ACM International Sys-
tems and Storage Conference (SYSTOR’21), Virtual. Acceptance Rate: 29.9%.

17. Manoj Pravakar Saha*, Bryan Kim, and Janki Bhimani, KV-SSD: What is it Good For?,
2021 Design Automation Conference (DAC’21), San Francisco, CA, 2021. Acceptance
Rate: 23%.

18. Danlin Jia, Manoj Pravakar Saha*, Janki Bhimani, and Ningfang Mi, Performance and
Consistency Analysis for Distributed Deep Learning Applications, 2020 International Per-
formance Computing and Communications Conference (IPCCC’20), Virtual using Zoom,
2020. Acceptance Rate: 29.3%.

19. Janki Bhimani, Rajinikanth Pandurangan, Ningfang Mi, and Vijay Balakrishnan, Emulate
Processing of Assorted Database Server Applications on Flash-Based Storage in Datacenter
Infrastructures, 2019 International Performance Computing and Communications Confer-
ence (IPCCC’19), London, UK, 2019. Acceptance Rate: 29.2%.

20. Danlin Jia, Janki Bhimani, Son Nam Nguyen, Bo Sheng, and Ningfang Mi, ATuMm: Auto-
tuning Memory Manager in Apache Spark, 2019 International Performance Computing and
Communications Conference (IPCCC’19), London, UK, 2019. Acceptance Rate: 29.2%.

21. Janki Bhimani, Tirthak Patel, Ningfang Mi, and Devesh Tiwari, “What does Vibration
do to Your SSD?”, 2019 Design Automation Conference (DAC’19), Las Vegas, NV, 2019.
Acceptance Rate: 24.3%.

22. Janki Bhimani, Ningfang Mi, Zhengyu Yang, Jingpei Yang, Rajinikanth Pandurangan,
Changho Choi and Vijay Balakrishnan, “FIOS: Feature Based I/O Stream Identification
for Improving Endurance of Multi-Stream SSDs”, 2018 IEEE International Conference on
Cloud Computing (CLOUD’18), San Francisco, CA, 2018. Acceptance Rate: 15%. (Best
Paper Award)

23. Janki Bhimani, Ningfang Mi, and Bo Sheng, “BloomStream: Data Temperature Identifi-
cation for Flash Based Memory Storage Using Bloom Filters”, 2018 IEEE International
Conference on Cloud Computing (CLOUD’18), San Francisco, CA, 2018. Acceptance Rate:
15%.

24. Zhengyu Yang, Morteza Hoseinzadeh, Ping Wong, John Artoux, Clay Mayers, David
Thomas Evans, Rory Thomas Bolt, Janki Bhimani, Ningfang Mi, and Steven Swanson,
“H-NVMe: A Hybrid Framework of NVMe-based Storage System in Cloud Computing
Environment”, IEEE International Performance Computing and Communications Confer-
ence (IPCCC’17), San Diego, CA, 2017. (Best Paper Award)

25. Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews, Clay Mayers, David Thomas Evans,
Rory Thomas Bolt, Janki Bhimani, Ningfang Mi, and Steven Swanson, “AutoTiering:
Automatic Data Placement Manager in Multi-Tier All-Flash Datacenter”, IEEE Interna-
tional Performance Computing and Communications Conference (IPCCC’17), San Diego,
CA, 2017.

5



26. Janki Bhimani, Ningfang Mi, Miriam Leeser, and Zhengyu Yang, “FiM: Performance Pre-
diction Model for Parallel Computation in Iterative Data Processing Applications”, IEEE
International Conference on Cloud Computing (CLOUD’17), Honolulu, HI, 2017. Accep-
tance Rate: 18%.

27. Han Gao, Zhengyu Yang, Janki Bhimani, Teng Wang, Jiayin Wang, Ningfang Mi, and Bo
Sheng, “AutoPath: Harnessing Parallel Execution Paths for E�cient Resource Allocation
in Multi-Stage Big Data Frameworks”, International Conference on Computer Communi-
cations and Networks (ICCCN’17), Vancouver, Canada, 2017. Acceptance Rate: 25%.

28. Qiumin Xu, Manu Awasthi, Krishna T. Malladi, Janki Bhimani, Jingpei Yang, and Murali
Annavaram. “Performance analysis of containerized applications on local and remote stor-
age” International Conference on Massive Storage Systems and Technology (MSST’17),
Santa Clara, CA, 2017.

29. Janki Bhimani, Jingpei Yang, Zhengyu Yang, Ningfang Mi, Qiumin Xu, Manu Awasthi,
Rajinikanth Pandurangan, and Vijay Balakrishnan, “Understanding Performance of I/O
Intensive Containerized Applications for NVMe SSDs”, IEEE International Performance
Computing and Communications Conference (IPCCC’16), Las Vegas, NV, 2016. Accep-
tance Rate: 25.50%.

30. Zhengyu Yang, Jianzhe Tai, Janki Bhimani, Jiayin Wang, Ningfang Mi, and Bo Sheng,
“GREM: Dynamic SSD Resource Allocation in Virtualized Storage Systems with Hetero-
geneous VMs”, IEEE International Performance Computing and Communications Confer-
ence (IPCCC’16), Las Vegas, NV, 2016. Acceptance Rate: 25.50%.

Other Peer Reviewed Conference and Workshop Publications
Acceptance rates provided when known

31. Manoj P. Saha*, Omkar Desai, Bryan S. Kim, Janki Bhimani. “Leveraging Keys In
Key-Value SSD for Production Workloads” The International ACM Symposium on High-
Performance Parallel and Distributed Computing (HPDC’23), Orlando, FL, 2023. (Short
Paper)

32. Adnan Maruf*, Daniel Carlson*, Ashikee Ghosh*, Manoj Saha*, Janki Bhimani, Raju
Rangaswami. “Allocation Policies Matter for Hybrid Memory Systems” The International
ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC’23),
Orlando, FL, 2023. (Short Paper)

33. Manoj P. Saha*, Bryan S. Kim, Haryadi S. Gunawi, Janki Bhimani. “RHIK - Re-configurable
Hash-based Indexing for KVSSD” The International ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC’23), Orlando, FL, 2023. (Short Paper)

34. Mahsa Bayati, Janki Bhimani, Ronald Lee, Ningfang Mi. “Exploring Benefits of NVMe
SSDs for BigData Processing in Enterprise Data Centers” International Conference on Big
Data Computing and Communication (BIGCOM’19), Qingdao, China, 2019.

35. Janki Bhimani, Jingpei Yang, Zhengyu Yang, Ningfang Mi, NHVKrishna Giri, Rajinikanth
Pandurangan, Changho Choi, and Vijay Balakrishnan. “Enhancing SSDs with multi-
stream: What? why? how?” IEEE International Performance Computing and Communi-
cations Conference (IPCCC’17), San Diego, CA, 2017. (Short Paper)

36. Janki Bhimani, Zhengyu Yang, Miriam Leeser, and Ningfang Mi, “Accelerating Big Data
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Applications Using Lightweight Virtualization Framework on Enterprise Cloud”, IEEE
High Performance Extreme Computing Conference (HPEC’17), Waltham, MA, 2017.

37. Qiumin Xu, Manu Awasthi, Krishna T. Malladi, Janki Bhimani, Jingpei Yang, Murali
Annavaram, “Docker Characterization on High Performance SSDs”, IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS’17), Santa Rosa,
CA, 2017. (Short Paper)

38. Liu Chao, Janki Bhimani, and Miriam Leeser, “Using High Level GPU Tasks to Ex-
plore Memory and Communications Options on Heterogeneous Platforms” ACM Work-
shop on Software Engineering Methods for Parallel and High Performance Applications
(SEM4HPC), Washington, D.C., 2017.

39. Liu Chao, Janki Bhimani, and Miriam Leeser, “Exploring Memory Options for Data
Transfer on Heterogeneous Platforms”, The International ACM Symposium on High-
Performance Parallel and Distributed Computing (HPDC’17), Washington, D.C., 2017.
(Short Paper)

40. Janki Bhimani, Miriam Leeser, and Ningfang Mi, “Performance Prediction Techniques for
Scalable Large Data Processing in Distributed MPI Systems”, IEEE International Perfor-
mance Computing and Communications Conference (IPCCC’16), Las Vegas, NV, 2016.
Acceptance Rate: 12%. (Short Paper)

41. Janki Bhimani, Miriam Leeser, and Ningfang Mi, “Design Space Exploration of GPU Ac-
celerated Cluster Systems for Optimal Data Transfer Using PCIe Bus”, IEEE High Per-
formance Extreme Computing Conference (HPEC’16), Waltham, MA, 2016.

42. Janki Bhimani, Miriam Leeser, and Ningfang Mi, “Accelerating K-Means Clustering with
Parallel Implementations and GPU Computing”, IEEE High Performance Extreme Com-
puting Conference (HPEC’15), Waltham, MA, 2015.

43. Janki Bhimani, Miriam Leeser and Ningfang Mi, “Predicting the Performance of Machine
Learning Algorithms running on Heterogeneous Computing Platforms” Women in Machine
Learning Workshop (WiML’14), Montréal, Canada, 2014. (Short Paper)

44. Baiyu Chen, Zhengyu Yang, Siyu Huang, Xianzhi Du, Zhiwei Cui, Janki Bhimani, Xin
Xie, and Ningfang Mi, “Cyber-Physical System Enabled Nearby Tra�c Flow Modelling
for Autonomous Vehicles”, IEEE International Performance Computing and Communica-
tions Conference, Special Session on Cyber Physical Systems: Security, Computing, and
Performance (IPCCC CPS’17), San Diego, CA, 2017.

45. Xianfei Xia, Hongru Xiao, Zhengyu Yang, Xin Xie, and Janki Bhimani, Pelletization Char-
acteristics of the Hydrothermal Pretreated Rice Straw with Added Binders. Arabian Jour-
nal for Science and Engineering 43, no. 9 (2018): 4811-4820.

Books N/A
Chapters in Books N/A
Government Reports or Monographs N/A
Book Reviews N/A

PRESENTED PAPERS, AND LECTURES
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1. Guest Speaker: A Comprehensive Approach to Memory and Storage Systems Optimiza-
tion, NSF AI Institute, Online, February 28, 2024.

2. Guest Speaker: Picking Research as Career, Women in CS (WiCS) Student Chapter,
Miami, FL, April 17, 2023.

3. Guest Speaker: Research Towards Data Storage and Management, Presentation Request
for Flit-Path Scholars, Miami, FL, February 11, 2022.

4. Invited Speaker: Emerging Technologies Moving Forward, Entrepreneurs’ Organization
(EO), Miami, FL, February 10, 2022.

5. Guest Lecture: Towards Designing Intelligent Storage Devices, IBM Research, Almaden,
San Jose, CA, May 12, 2021.

6. Guest Lecture: Challenges of the Evolving Memory and Storage Technologies, Memory
Solutions Lab, Samsung, San Jose, CA, October 23, 2020.

7. Guest Speaker: Ph.D. in Computer Science – from the lens of a Girl who likes pink, FIU
Women in Cybersecurity (WiCys) Student Chapter, Miami, FL, October 22, 2020.

8. Guest Lecture: New Techniques for Data Management in Evolving Storage Technologies,
Florida International University, Miami, FL, November 22, 2019.

9. Guest Lecture: New Storage Technologies for Big Data Processing on Cloud and Datacenter
Infrastructures, Colorado State University, Fort Collins, CO, March 27, 2019.

10. Paper Presentation Talk: FIOS: Feature Based I/O Stream Identification for Improving
Endurance of Multi-Stream SSDs, 2018 IEEE International Conference on Cloud Comput-
ing (CLOUD’18), San Francisco, CA, 2018.

11. Paper Presentation Talk: BloomStream: Data Temperature Identification for Flash Based
Memory Storage Using Bloom Filters, 2018 IEEE International Conference on Cloud Com-
puting (CLOUD’18), San Francisco, CA, 2018.

12. Paper Presentation Talk: FiM: Performance Prediction Model for Parallel Computation
in Iterative Data Processing Applications, IEEE International Conference on Cloud Com-
puting (CLOUD’17), Honolulu, HI, 2017.

13. Paper Presentation Talk: Understanding Performance of I/O Intensive Containerized Ap-
plications for NVMe SSDs, IEEE International Performance Computing and Communica-
tions Conference (IPCCC’16), Las Vegas, NV, 2016.

14. Paper Presentation Talk: Accelerating Big Data Applications Using Lightweight Virtu-
alization Framework on Enterprise Cloud, IEEE High Performance Extreme Computing
Conference (HPEC’17), Waltham, MA, 2017.

15. Paper Presentation Talk: Design Space Exploration of GPU Accelerated Cluster Systems
for Optimal Data Transfer Using PCIe Bus, IEEE High Performance Extreme Computing
Conference (HPEC’16), Waltham, MA, 2016.

16. Paper Presentation Talk: Accelerating K-Means Clustering with Parallel Implementa-
tions and GPU Computing, IEEE High Performance Extreme Computing Conference
(HPEC’15), Waltham, MA, 2015.
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CREATIVE WORK

1. Led the development and approval of the NSF Broadening Participation in Computing
(BPC) Plan for the KFCISE department, providing a standardized NSF approved doc-
ument for faculty submitting medium and large grants, including CORE and CAREER
proposals.

2. Integrated class projects with the NSF Chameleon Cloud to prepare students for utiliz-
ing shared cloud computing platforms in their research, enhancing their skills in cloud
infrastructure, scalability, and resource management.

3. Conducting a SWOT Analysis as a strategic planning technique has been a key initiative
to enhance the overall learning experience of the class.

4. Taking the lead in designing and developing the website for the VOCES project, which
can be accessed at https://voces.fiu.edu/, has been a significant contribution.

5. Creating an e�cient workflow that covers the entire lifecycle of multimedia posts, including
stages such as concept brainstorming, assignment of responsibilities, post design using
tools like Canva, feedback collection and review, post enhancements, and final staging, has
streamlined the process.

6. Determining the optimal posting frequency and content distribution across various social
media platforms, such as LinkedIn, Instagram, and others, with the aim of organically
boosting engagement and cultivating student interest in becoming VOCEROs, has been a
strategic focus.

7. Creating a pioneering teaching method by incorporating surveys and polls to assess student
engagement and pinpoint challenging topics has been a transformative approach. Initially
breaking down module topics into more digestible sub-topics, prompting students to assess
their di�culty through pre-class polls, and then revisiting the sub-topics that most students
found challenging in the following class using real-time feedback, employing personalized
teaching techniques to enhance understanding, and facilitating an open forum for students
to anonymously ask questions has significantly improved the learning experience.

WORKS IN PROGRESS

Publications

1. Daniar Kurniawan, Maharani A. P. Irawan, Kahfi S. Zulkifli, Ray A. O. Sinurat, Peiran
Qin, Janki Bhimani, Sandeep Madireddy, Achmad Imam Kistijantoro, and Haryadi S.
Gunawi, Heimdall: Accurate and E�cient I/O Admission Policy with Extensive Machine
Learning Pipeline

2. Omkar Desai, Shuyi Pei, Janki Bhimani, Bryan S. Kim, Preparation Meets Opportunity:
Enhancing the Data Pipeline for DNN Training with Seneca

3. Manoj Pravakar Saha*, Raju Rangaswami, Yanzhao Wu, and Janki Bhimani, Fragments:
Can Fragmented Views of DNN Training State Eliminate Stalls and Achieve Fast Failure
Recovery?

4. Christopher Lukas Kverne*, Agoritsa Polyzou, and Janki Bhimani, COURSE-MARKET
FIT: Understanding the Relevance of Course Content to Employment Opportunities
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5. Ali Bin Omer Qureshi*, Lie Pan, Dheeraj Gandi, Yifan Guo and Janki Bhimani, Optimiz-
ing Data Transfers in Edge Computing

6. Ali Bin Omer Qureshi*, Lie Pan, Dheeraj Gandi, Yifan Guo and Janki Bhimani, Data
Spilling Reduction in PrestoDB

7. Manoj Pravakar Saha*, Bryan Kim, and Janki Bhimani, Optimizing In-Storage Indexing

8. Omkar Desai, Daniel Carlson*, Janki Bhimani, Bryan S. Kim, Conch: Caching System for
Concurrent DNN Training

9. Pratik Poudel*, Jason Liu, Janki Bhimani, Distributed Workload Characterization Opti-
mizer

10. Manoj Pravakar Saha*, Bryan Kim, and Janki Bhimani, DeePaM: Distributed Deep-
Learning Page Cache Management for Disaggregated Memory System

11. Manoj Pravakar Saha*, Raju Rangaswami, Yanzhao Wu, and Janki Bhimani, MiPiCheck:
Mixed Pipeline Checkpointing

12. Manoj Pravakar Saha*, Ashikee Ghosh*, Raju Rangaswami, YanzhaoWu, and Janki Bhimani,
LATTICE: Looking Beyond File I/O-based DNN Checkpointing

13. Omkar Desai, Adnan Maruf*, Janki Bhimani, Bryan S. Kim, Modeling the space-time
trade-o↵ for the DSI pipeline in ML training.

14. Adnan Maruf*, Ashikee Ghosh*, Janki Bhimani, and Raju Rangaswami, RUMINANT–
Adaptive Tiering for Hybrid Memory Systems.

15. Daniel Carlson*, Adnan Maruf*, Ashikee Ghosh*, Janki Bhimani, and Raju Rangaswami,
Understanding Hybrid Memory Allocations.

16. Adnan Maruf*, Daniel Carlson*, Janki Bhimani, Persistent Memory To Better Manage
File-backed Pages of Gaming Workloads.

17. Adnan Maruf*, Dwaraka Prasath Mohen Babu*, Christopher Meadows*, Ningfang Mi, Bo
Sheng, and Janki Bhimani, Data Structure For Low-Overhead Stream Identification.

18. Manoj Pravakar Saha*, Bryan Kim, and Janki Bhimani, Flash Isolation Without Instru-
mentation Overhead.

19. Manoj Pravakar Saha*, Omkar Desai, Bryan Kim, and Janki Bhimani, Multi-Tenant Key
Value Device Indexing.

20. Manoj Pravakar Saha*, Aris Duani Rojas*, and Janki Bhimani, Parallel Data Access
Within Key Value Storage Devices.

Proposals Submitted For Review and Under Preparation

[3 PI + 2 co-PI]

1. Towards Designing Resilient High Performing Storage Devices, under preparation, PI.

2. NSF AI Institute on Neuro-Symbolic AI, under preparation.

3. CAHSI-Google Institutional Research Program (IRP): Optimizing Data Workflows in ML,
PI, Oct 2024 - Sep 2025, $100,000.
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4. Samsung GRO: New Techniques for Managing Accelerator Compute and CXL Memory to
Improve Performance and Scalability of AI Inference, PI, Oct 2024 - Sep 2026, $299,852,
PI team: Ningfang Mi, Northeastern University.

5. TensorHeap: Cross-Stack Memory Management for Machine Learning, Co-PI.

FUNDED RESEARCH GRANTS

[10 PI + 3 co-PI/SI = $6,092,218; Total PI funds = $2,992,232; My share of PI
funds to FIU = $1,972,303; Co-PI/SI funds to FIU = $95,750.79]

1. 2024 - 2028 NSF Core Medium (PI)
“CSR: Medium: DISCO: Disciplined Data Science Framework for Storage I/O Manage-
ment”
PI team: Haryadi S. Gunawi, University of Chicago and Sandeep R. Madireddy, Argonne
National Laboratory
Total Value: $1,200,000 (Direct+Indirect) My share: $475,000 (37.5%)
Start date: Oct 1, 2024 Expiration date: Sep 30, 2028
Project ID: 800019285

2. 2024-2029 NSF CAREER (Only PI)
“CAREER-2338457 - Towards E�cient In-storage Indexing”
Total Value: $615,528 (Direct+Indirect) My share: $615,528 (100%)
Start date: Jul 1, 2024 Expiration date: Jun 30, 2029
Project ID: 800018670

3. 2024-2026 NSF REU Supplement (Only PI)
“CSR-2406069 - REU: Learning and Management in Tiered Memory Systems”
Total Value: $16,000 (Direct+Indirect) My share: $16,000 (100%)
Start date: Jan 1, 2024 Expiration date: Dec 31, 2024
Project ID: 800020019

4. 2023-2026 NSF CISE Core (Only PI)
“CSR-2323100 NSF Core: CSR: Small: Learning and Management in Tiered Memory
Systems”
Total Value: $514,704 (Direct+Indirect) My share: $514,704 (100%)
Start date: Oct 1, 2023 Expiration date: Sep 30, 2026
Project ID: 800018181

5. 2023-2024 Samsung Global Research Outreach (GRO) Award (PI)
“Leveraging Disaggregated Servers for Large Scale AI Training Acceleration”
Co-PI: Bryan Kim, Syracuse University
Total Value: $50,000 (Direct+Indirect) My share: $25,000 (50%)
Start date: Sep 1, 2023 Expiration date: Feb 29, 2024

6. 2022-2027 NSF HSI (SI)
“HRD-2225201 - HSI Institutional Transformation Project Voces (Voices for Organizing
Change in Educational Systems)”
PI team: Yesim Darici, Stephen Secules, Rocio Benabentos, Laird Kramer, Jaroslava
Miksovska, Monica Cardella, FIU
Total Value: $2,999,986 (Direct+Indirect) My share: $69,340 (2.3%)
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Start date: Sep 15, 2022 Expiration date: Aug 31, 2027

7. 2022-2023 Samsung Memory Solutions Lab (MSL) Research Award (PI)
“Leveraging Disaggregated Servers for Large Scale AI Training Acceleration”
Co-PI: Bryan Kim, Syracuse University
Total Value: $50,000 (Direct+Indirect) My share: $25,000 (50%)
Start date: Mar 1, 2023 Expiration date: Aug 31, 2023

8. 2021 Samsung Semiconductor Inc. Equipment Grant (Only PI)
“Parallel Data Access with Key-Value SSDs”
Total Value: $10,000 (Direct+Indirect) My share: $10,000 (100%)
Start date: Oct 1, 2021 Expiration date: Jun 30, 2022

9. 2021-2022 NSF REU Supplement (Only PI)
“CNS-2122987 - REU: New Techniques for I/O Behavior Modeling and Persistent Storage
Device Configuration”
Total Value: $16,000 (Direct+Indirect) My share: $16,000 (100%)
Start date: May 1, 2021 Expiration date: Apr 30, 2022
Project ID: 800014726

10. 2020-2023 NSF CISE Core (Lead PI)
“CNS-2008324 - Small: New Techniques for I/O Behavior Modeling and Persistent Storage
Device Configuration”
Co-PI: Ningfang Mi, Northeastern University
Total Value: $500,000 (Direct+Indirect) My share: $255,071 (51%)
Start date: May 1, 2020 Expiration date: Apr 30, 2023
Project ID: 800012359

11. 2020-2022 Cyber Florida (Co-PI)
“RumorHunt: A Next-Generation Online Scalable Streaming System”
PI team: Liting Hu, FIU and Zhishan Guo, University of Central Florida
Total Value: $75,000 (Direct+Indirect) My share: $21,410.79 (28%)
Start date: Aug 1, 2020 Expiration date: May 30, 2022
Project ID: 800012574

12. 2019-2020 FIU Faculty Grantsmanship Development Program (Co-PI)
“Design, Development and Testing of Distributed Computing Framework for globally co-
ordinated data submission and accessibility of Mass Spectrometry Data”
PI team: Fahad Saeed, Alex Afanasyev, Hadi Amini, FIU
Total Value: $25,000 (Direct+Indirect) My share: $5,000 (20%)
Start date: Nov 1, 2019 Expiration date: May 30, 2020

13. 2019 Samsung Semiconductor Inc. Equipment Grant (Only PI)
“Exploring Vulnerabilities of Key-Value SSDs”
Total Value: $20,000 (Direct+Indirect) My share: $20,000 (100%)
Start date: Oct 1, 2019 Expiration date: Sep 30, 2021

PROPOSALS SUBMITTED BUT NOT FUNDED
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1. Pre-Application for ASCR-RENEW (DE-FOA-0002942): Establishing a Sustainable Path-
way for Hispanic Students in AI and High-Performance and Scientific Computing Careers
at Florida International University (FIU) and Sandia National Laboratories (SNL), Co-PI,
PI team: Jason Liu, Raju Rangaswami, Cuong Nguyen, Wenqian Dong, Yanzhao Wu,
FIU, Ron Oldfield, Jay Lofstead, Andrew Younge, Patricia Gharagozloo, Sandia National
Laboratories (SNL).

2. NSF Core: Collaborative Research: CSR: Medium: TensorHeap: Cross-Stack Memory
Management for Machine Learning, Co-PI, Aug 2023 - Jul 2027, $546,523, PI team: Raju
Rangaswami, Jason Liu, FIU, Ming Zhao, Jia Zou, Arizona State University, and Wujie
Wen, Lehigh University.

3. NSF CISE Core Medium: LISSA: Learning in the Storage Stack, PI, Jul 2022 - Jun 2026,
$1,200,000, PI team: Haryadi S. Gunawi, University of Chicago and Sandeep R. Madireddy,
Argonne National Laboratory.

4. NSF CAREER: Ameliorate In-storage Indexing, Single PI, Jan 2023 - Dec 2028, $599,789

5. DOE CAREER: Techniques to Leverage Emerging Persistent Memories to Accelerate Par-
allel Data Accesses, Aug 2022 - Jul 2027, $750,000

6. NSF CISE: CNS Core: Small: Towards an Adaptive, Multi-Indexed, and Distributed Key-
Value Based Flash Storage, PI, Aug 2022 - Jul 2025, $600,000, PI team: Bryan Kim,
Syracuse University.

7. NSF PPoSS large: PPoSS: LARGE: TensorHeap: Cross-Stack Memory Management for
Machine Learning, Co-PI, Aug 2022 - Jul 2027, $2,011,614, PI team: Raju Rangaswami,
Jason Liu, FIU, Ming Zhao, Jia Zou, Arizona State University, and Wujie Wen, Lehigh
University.

8. NSF STC: Science and Technology Center for Decentralized Autonomous Organizations,
Key Personnel, Jan 2023 - Dec 2028, $30,000,000, PI team: Yesim Darici, Kemal Akkaya,
Hebin Li, Raju Rangaswami, Selcuk Uluagac, Jason Liu, Sukumar Ganapati, Aslihan
Akkaya, Laird Kramer, FIU, Ismail Guvenc, North Carolina State University, Ming Zhao,
Arizona State University, Shengwang Du, University of Texas at Dallas, Yufei Ding, Uni-
versity of California at Santa Barbara, and Michael Titze, Sandia National Labs.

9. NSF Collaborative Research: PPoSS: Planning: Cross-Stack Memory Management for
Machine Learning, Co-PI, Aug 2021 - Jul 2023, $110,000, PI team: Raju Rangaswami,
Jason Liu, FIU, Ming Zhao, Jia Zou, Arizona State University, and Wujie Wen, Lehigh
University.

10. NSF INCLUDES Alliance: Tomorrow’s Women in STEM Today (TWIST), Co-PI, Aug
2021 - Jul 2026, $9,257,973, PI team: Yesim Darici, Jessy Abouarab, Mireya Mayor, FIU.

11. NSF CAREER: Leveraging Persistent Key-Value SSDs, Single PI, Jan 2021 - Dec 2026,
$542,600

12. NSF Distributed Infrastructure for Making Mass Spectrometry Data Findable and Ac-
cessible, Co-PI, Aug 2021 - Sep 2024, $803,269, PI team: Fahad Saeed and Hadi Amini,
FIU.

13. NSF NSF INCLUDES: Planning Grant FIU TWIST, Co-PI, Aug 2020 - Jul 2022, $99,998,
PI team: Yesim Darici, Jessy Abouarab, Mireya Mayor, FIU.
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14. NSF CIBR: Distributed Infrastructure for Big Mass Spectrometry Data, Co-PI, Oct 2020
- Sep 2023, $1,048,558, PI team: Fahad Saeed and Hadi Amini, FIU.

15. NSF Collaborative Research: PPoSS: Planning: Leveraging Persistent Memory for Trust-
worthy ML, Co-PI, Aug 2020 - Jul 2022, $146,262, PI team: Raju Rangaswami, FIU, Ming
Zhao, Jia Zou, Arizona State University, and Wujie Wen, Lehigh University.

16. Facebook Faculty Research Award for Distributed Systems Research: Distributed Systems
for Deep-Learning with Heterogeneous Persistent Storage, Single PI, Aug 2020 - Jul 2022,
$100,000

17. Facebook Faculty Research Award for Systems for Machine Learning: System Memory
and Storage Management for Deep Learning, Single PI, Aug 2020 - Jul 2022, $100,000

18. Microsoft Faculty Award: E�cient Resource Management for Distributed Deep-Learning
with Flash-Based Persistent Storage, Single PI, Aug 2020 - Jul 2022, $200,000

19. FIU Faculty Grantsmanship Development Program: VisualizingWomen’s Health in Miami-
Dade County, Co-PI, Jan 2019 - Dec 2020, $25,000, PI team: Yesim Darici, Jessy Abouarab.

20. FIU Faculty Grantsmanship Development Program: Evaluating E↵ective Pipeline Strate-
gies for Women in STEM Success Using GIS: What works and what doesn’t work in FL
Schools, Co-PI, Jan 2020 - Dec 2020, $25,000, PI team: Yesim Darici, Jessy Abouarab.

21. Bill & Melinda Gates Foundation: Re-Examining the Patterns of and Motivations for
Traditional Contraception Method Use in India and Sub-Saharan Africa: A Mixed-Method
Approach, Key Personnel, Aug 2020 - Jul 2025, $1,977,500, PI team: Yesim Darici, Jessy
Abouarab, Haiying Long, Sarah Stumbar, Jessica Meadows, Stephany Alvarez-Ventura,
FIU and Rahman Tauhidur, Arizona State University.

22. NSF CRII: CSR: System Support for Evolving Flash-Based Persistent Storage to Accelerate
Parallel Applications, Single PI, May 2020 - April 2022, $174,915.99

PATENT DISCLOSURES, APPLICATIONS, AND AWARDS

(Content in blue color are items since arriving at FIU.)

Daniel Carlson*, Adnan Maruf*, Raju Rangaswami, and Janki Bhimani, inventors; ”Tech-
niques to Dynamically Allocate Pages within CXL Memory Systems”, Application.

1.2. Manoj Pravakar Saha*, Yanzhao Wu, Raju Rangaswami, and Janki Bhimani, inventors;
”Methods to E�ciently Checkpoint Deep-Learning Model on Persistent Memories”, Ap-
plication.

3. Manoj Pravakar Saha*, Janki Bhimani, inventors; “Flexible and E�cient Data Manage-
ment Techniques Within Key Value Storage”, US 17/340,573.

4. Adnan Maruf*, Ashikee Ghosh*, Raju Rangaswami, and Janki Bhimani, inventors; “ML
based Tiered Memory”, US 17/344,449.

5. Janki Bhimani, Jingpei Yang, Changho Choi, inventors; Samsung Electronics Co Ltd,
assignee. “Parallel key value based multi-thread machine learning exploiting KV-SSDs”
US 16/528,492.
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6. Janki Bhimani, Rajinikanth Pandurangan, Changho Choi, Vijay Balakrishnan, inventors;
Samsung Electronics Co Ltd, assignee. “System and method for identifying hot data and
stream in a solid-state drive” US 15/895797.

7. Janki Bhimani, Rajinikanth Pandurangan, Vijay Balakrishnan, Changho Choi, inventors;
Samsung Electronics Co Ltd, assignee. “Methods and systems for testing storage devices
via a representative I/O generator” United States patent application US 15/853419.

8. Janki Bhimani, Anand Subramanian, Vijay Balakrishnan, and Jingpei Yang, inventors;
Samsung Electronics Co Ltd, assignee. “Container workload scheduler and methods of
scheduling container workloads” United States patent application US15/820856.

9. Janki Bhimani, Jingpei Yang, Changho Choi, Jianjian Huo, inventors; Samsung Electronics
Co Ltd, assignee. “Smart I/O stream detection based on multiple attributes” United States
patent application US 15/344,422.

10. Janki Bhimani, Hingkwan Huen, Jingpei Yang, Manu Awasthi, Vijay Balakrishnan, Jason
Martineau, inventors; Samsung Electronics Co Ltd, assignee. “Intelligent controller for
containerized applications” United States patent application US 15/379,327.

PROFESSIONAL ACHIEVEMENTS, HONORS, AWARDS, AND FELLOWSHIPS

(Content in blue color are items since arriving at FIU.)

1. 2024 - Received NSF CAREER Award.

2. 2023 - Received FIU Top Scholar Award in the category of the Research, Creative Activi-
ties, and Award-Winning Publications.

3. 2023 Quality Matters Certification for Online Course - CIS5346 Storage System

4. 2022 - Received Outstanding Applied Research Award by Knight Foundation School of
Computing and Information Science (KFSCIS), FIU.

5. 2022 The Best Paper Award at 14th ACM Workshop on Hot Topics in Storage and Filesys-
tem (HotStorage’22).

6. 2022 The Best Paper Award Nomination at Design, Automation and Test in Europe Con-
ference. The European Event for Electronic System Design and Test (DATE’22)

7. 2022 Quality Matters Certification for Online Course - COP3530 Data Structures

8. 2021 Awarded Certificate of Completion from ASEE DELTA Junior Faculty Institute

9. 2021 Grace Hopper Celebration of Women in Computing (GHC) Faculty Scholarship

10. 2021 Recognized as Distinguished Reviewer Award, 13th ACM Workshop on Hot Topics
in Storage and File Systems (HotStorage ’21)

11. 2020 Received Certification for Hybrid Course - COP3530 Data Structures

12. 2020 Grace Hopper Celebration of Women in Computing (GHC) Faculty Scholarship

13. 2019 Outstanding Graduate Research Award, Northeastern University
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14. 2018 The Best Paper Award at 11th IEEE International Conference on Cloud Computing
(IEEE CLOUD)

15. 2017 The Best Paper Award at 36th IEEE International Performance Computing and
Communications Conference (IPCCC)

16. 2014 Double Husky Scholarship, Northeastern University

17. 2012 The Best Budget Robot Award at 3rd Lunabotics International Mining Competition,
NASA, Kennedy Space Center, FL

18. 2012 The Best Working Model Award in Junk Yard Wars at Conscientia, Indian Institute
of Space Science Technology (IIST)

19. 2012 The Best Paper Award at Aagama National Level Technical Paper Contest

20. 2011 The Best Working Model in Junk Yard Wars during Technozion at National Institute
Of Technology (NIT)

21. 2011 The Outstanding Debate Performance Award by Institute of Engineers India (IEI)

22. 2010 The Impromptu Speaker Award by International Society for Technology in Education
(ISTE)

23. 2010 - 2013 University Merit Scholarship, GITAM University

ACADEMIC SUPERVISION

Doctoral Students (Thesis Advisees)

[11 Ph.D.Thesis Advisees (1 graduated + 1 proposal defended + 3 candidate + 3
discontinued + 2 hired applicant starting next semester), and 10 Ph.D. Committee
Member (4 graduated + 3 proposal defended + 3 qualifying passed)]

Graduated Ph.D. Students

1. Adnan Maruf, Ph.D. student
Dissertation topic: Improving the performance and reliability of systems with emerging
memory and storage devices
Graduated in Apr. 2023
Tenure Track Assistant Professor, Missouri State University

Current Ph.D. Students (Thesis Advisees)

2. Manoj Pravakar Saha, Ph.D. student
Dissertation topic: Enhancing the in-storage indexing and ML checkpointing
Dissertation plan: Spring 2025
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3. Alexis Gonzales, Ph.D. student
Dissertation topic: Fault-Tolerant Caching Service
Dissertation plan: Fall 2027

4. Ali Bin Omer Qureshi, Ph.D. student
Dissertation topic: Optimizing Data Spilling in Distributed Query Engine and Memory
Management3w
Dissertation plan: Fall 2029

5. Mayur Akewar, Ph.D. student
Dissertation topic: Towards Designing New Techniques for AI Based Data Indexing and
Neuro-Symbolic AI
Dissertation plan: Spring 2030

6. Gabriel Rovira, Ph.D. student
Dissertation topic: Improving Data Distribution Pipeline in Heterogeneous Memory Sys-
tem with CXL Devices
Dissertation plan: Fall 2030

(2 new Ph.D. students hired starting next semester)

Discontinued Ph.D. Students

7. Daniel Carlson, Ph.D. student
Dissertation topic: Improving the Performance of Dis-aggregated Memory Systems
Duration advised by me: Fall 2020 - Spring 2024

8. Ashikee Ghosh, Ph.D. student
Dissertation topic: Designing Libraries for E�cient ML Checkpointing
Duration co-advised by me: Spring 2020 - Fall 2023
Software Development Engineer, Amazon

9. Maimuna Begum Kali, Ph.D. student
Dissertation topic: Optimizing Parallel Operations within BigData Processing Platforms
Duration advised by me: Fall 2019 - Fall 2021
Ph.D. student, School of Universal Computing, Construction, and Engineering Education
(SUCCEED)

Ph.D. Committee Member

10. Rafael Trujillo

11. Pratik Poudel

12. Pedro Espina

13. Sumesh Kumar

14. Ziyang Jiao (Syracuse University)

15. Omkar Desai (Syracuse University)
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16. Liana Valdes Rodriguez (Graduated)

17. Oswaldo Artiles (Graduated)

18. Muhammad Haseeb (Graduated)

19. Danlin Jia (Northeastern University) (Graduated)

M.S. Students (Thesis/Project Advisees)

[5 M.S. Students (3 graduated + 2 current) ]

Graduated M.S. Students

20. Dwaraka Prasath Mohen Babu, ESpace Networks

21. Ashikee Ghosh, Amazon

22. Ali Bin Omer Qureshi

Current M.S. Students

23. Shashidhar Reddy Chavula

24. Muttahar Khalid

Research Experience for Undergrad (REU) Students

Graduated Undergrad Students

25. Gabriel Zavala, Dell

26. Daniel Carlson

27. Roberto Martinez, Co-Founder & CPO of GammaSwap Labs

28. Christopher Meadows

29. Aris Duani Rojas, Ph.D. Student

30. Sashri Brahmakshatriya

31. Natalia Valencia, Ph.D. Student

32. Kevin Nordman

Current Undergrad Students

33. Federico Monteverdi

34. Christopher Lukas Kverne

35. Amanda Di Perna
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Independent Study

[1 M.S. + 3 Undergraduate]

1. Daniel Carlson, Summer 2022, Topic: Hybrid Memory Management.

2. Dwaraka Prasath Mohen Babu, Spring 2022, Topic: Data Structures to Identify Data
Streams.

3. Sashri Brahmakshatriya, Summer 2021, Topic: Analyze Reliability of SSDs.

4. Christopher Meadows, Summer 2021, Topic: Design Data Stream Identifier.

Capstone Mentoring

1. Daniel Carlson

2. Patrick Perez

3. Oscar Barbosa

4. Nazmul Huq

5. Luis Acosta

6. Ettore Mottola

7. Eitan Flor

8. Bryan Camacho

TEACHING ACTIVITIES

Storage Systems (CIS 5346): The most recent o↵ering of this course was in Fall 2023,
and it underwent evaluation by students through the Student Perceptions of Teaching Survey
(SPOTs), yielding a commendable mean score of 4.64/5. Notable comments from students
include, ”The most successful aspect of this course is the detailed information in the lectures
about the objectives and executions of each module and great instructor-student interactions.”
Another student mentioned, ”The professor’s availability and commitment towards every student
was commendable.” Additionally, a student highlighted, ”This was the best online course that
I have taken so far, expertly crafted, and the pacing of this course was good.” Lastly, a student
appreciated the practicality, stating, ”The way we could relate the course to real-life scenarios
will definitely help me never forget what I learned. Course material and discussions are thought-
provoking and interesting.”

Data Structures (COP 3530): COP 3530 earns its ”e↵ort-intensive” label due to students’
substantial growth expectations post-course and a high enrollment rate. In Fall 2023, my SPOTs
rating was 4.19/5. Students praised COP 3530 for being ”well-structured,” with one noting,
”The most successful aspect is probably having discussions for each Module.” Another student
commended the ”Professor’s teaching proficiency is 5+ stars rating, she presents lectures in
a clear, understandable way with many opportunities in each module to get clarification.” The
”video lectures” were highlighted for their ”easy-to-understand quality.” Overall, the course was
recognized for its ”balance, pacing, and real-world applicability, making it a transformative and
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great learning experience.” The peer evaluation of this course by my colleague Dr. Masoud
Milani stated that ”my observations, as well as students’ opinions, confirm that Dr. Bhimani
is an outstanding teacher who has clearly mastered the art of teaching.”

Graduate Courses Taught
Overall SPOTS rating: 4.26/5

1. CIS 5346: Storage Systems, Fall 2024, Fully-online modality, SPOTs- Number of student:
, Response rate: , Overall average: .

2. CIS 7980: Ph.D. Dissertation, Summer 2024, Hybrid modality, SPOTs- Number of student:
1, Response rate: NA, Overall average: NA.

3. CIS 5346: Storage Systems, Spring 2024, Fully-online modality, SPOTs- Number of stu-
dent: 34, Response rate: 90, Overall average: 4.53/5.

4. CIS 7980: Ph.D. Dissertation, Spring 2024, Hybrid modality, SPOTs- Number of student:
1, Response rate: NA, Overall average: NA.

5. CIS 5346: Storage Systems, Fall 2023, Fully-online modality, SPOTs- Number of student:
15, Response rate: 92.9, Overall average: 4.64/5.

6. CIS 7910: Graduate Research, Fall 2023, Hybrid modality, SPOTs- Number of student: 1,
Response rate: NA, Overall average: NA.

7. CIS 7980: Ph.D. Dissertation, Fall 2023, Hybrid modality, SPOTs- Number of student: 1,
Response rate: NA, Overall average: NA.

8. CIS 7980: Ph.D. Dissertation, Summer 2023, Hybrid modality, SPOTs- Number of student:
1, Response rate: NA, Overall average: NA.

9. CIS 5346: Storage Systems, Spring 2023, Fully-online modality, SPOTs- Number of stu-
dent: 27, Response rate: 100%, Overall average: 3.8/5.

10. CIS 7980: Ph.D. Dissertation, Spring 2023, Hybrid modality, SPOTs- Number of student:
2, Response rate: NA, Overall average: NA.

11. CIS 7980: Ph.D. Dissertation, Fall 2022, Hybrid modality, SPOTs- Number of student: 2,
Response rate: NA, Overall average: NA.

12. CIS 7980: Ph.D. Dissertation, Summer 2022, Hybrid modality, SPOTs- Number of student:
2, Response rate: NA, Overall average: NA.

13. CIS 5346: Storage Systems, Spring 2022, Fully-online modality, SPOTs- Number of stu-
dent: 27, Response rate: 100%, Overall average: 4.11/5.

14. CIS 5900: Independent Study, Spring 2022, Hybrid modality, SPOTs- Number of student:
1, Response rate: NA, Overall average: NA.

15. CIS 7980: Ph.D. Dissertation, Spring 2022, Hybrid modality, SPOTs- Number of student:
2, Response rate: NA, Overall average: NA.

16. CIS 7980: Ph.D. Dissertation, Fall 2021, Hybrid modality, SPOTs- Number of student: 2,
Response rate: NA, Overall average: NA.

17. CIS 7980: Ph.D. Dissertation, Summer 2021, Hybrid modality, SPOTs- Number of student:
2, Response rate: NA, Overall average: NA.
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18. CIS 7910: Graduate Research, Spring 2021, Hybrid modality, SPOTs- Number of student:
1, Response rate: NA, Overall average: NA.

19. CIS 7980: Ph.D. Dissertation, Fall 2021, Hybrid modality, SPOTs- Number of student: 1,
Response rate: NA, Overall average: NA.

20. CIS 7910: Graduate Research, Fall 2020, Hybrid modality, SPOTs- Number of student: 1,
Response rate: NA, Overall average: NA.

21. CIS 7980: Ph.D. Dissertation, Fall 2020, Hybrid modality, SPOTs- Number of student: 1,
Response rate: NA, Overall average: NA.

22. CIS 7910: Graduate Research, Summer 2020, Hybrid modality, SPOTs- Number of stu-
dent: 1, Response rate: NA, Overall average: NA.

23. CIS 7910: Graduate Research, Spring 2020, Hybrid modality, SPOTs- Number of student:
1, Response rate: NA, Overall average: NA.

24. CIS 7980: Ph.D. Dissertation, Spring 2020, Hybrid modality, SPOTs- Number of student:
1, Response rate: NA, Overall average: NA.

25. CIS 5346: Storage Systems, Fall 2019, In-person modality, SPOTs- Number of student:
12, Response rate: 75%, Overall average: 4.48/5.

Undergraduate Courses Taught
Overall SPOTS rating: 4.00/5

1. COP 3530: Data Structures, Fully-online modality, Fall 2023, SPOTs- Number of student:
48, Response rate: 83.3, Overall average: 4.19/5.

2. COP 3530: Data Structures, Fully-online modality, Spring 2023, SPOTs- Number of stu-
dent: 60, Response rate: 85.4%, Overall average: 3.64/5.

3. COP 3530: Data Structures, Fully-online modality, Fall 2022, SPOTs- Number of student:
47, Response rate: 85.4%, Overall average: 3.93/5.

4. CIS 3900 Independent Study, Summer 2022, Hybrid modality, SPOTs- Number of student:
1, Response rate: NA, Overall average: NA.

5. COP 3530: Data Structures, Fully-online modality, Spring 2022, SPOTs- Number of stu-
dent: 39, Response rate: 69.2%, Overall average: 3.85/5.

6. COP 3530: Data Structures, Fall 2021, Fully-online modality, SPOTs- Number of student:
47, Response rate: 80.9%, Overall average: 4.2/5.

7. CIS 3900 Independent Study, Summer 2021, Hybrid modality, SPOTs- Number of student:
2, Response rate: NA, Overall average: NA.

8. COP 3530: Data Structures, Spring 2021, Fully-online modality, SPOTs- Number of stu-
dent: 51, Response rate: 72.5%, Overall average: 4.43/5.

9. COP 3530: Data Structures, Fall 2020, Certified hybrid modality, SPOTs- Number of
student: 39, Response rate: 84.6%, Overall average: 2.74/5.

10. COP 3530: Data Structures, Spring 2020, Hybrid modality, SPOTs- Number of student:
18, Response rate: 94.4%, Overall average: 4.13/5.
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11. EECE 2560: Fundamentals of Engineering Algorithms (Northeastern University), Fall
2017, In-person modality, SPOTs- Number of student: 12, Response rate: 80%, Over-
all average: 4.8/5.

OTHER PROFESSIONAL ACTIVITIES AND PUBLIC SERVICE

FIU Internal Service

1. 2023-2024: KFSCIS Awards Committee

2. 2023-2024: CEC Faculty Council Representative

3. 2023-2024: KFSCIS Seminar Series Coordinator

4. 2023-2024: CEC Faculty representative at United Nations Women and Girls in Science
day annual celebrations

5. 2023-2024: Graduate Council

6. 2022-2023: CEC Faculty Council Representative

7. 2022-2023: KFSCIS Seminar Series Coordinator

8. 2022-2023: Subject area coordinator: BS-CS for Programming: COP-2210, COP-3337,
COP-3530, COP-4338, COP-4226, COP-4520

9. 2022-2023: KFSCIS Diversity, Equity & Inclusion (DEI) Committee

10. 2022-2023: CEC Faculty representative at United Nations Women and Girls in Science
day annual celebrations

11. 2022-2023: Graduate Council

12. 2021-2022: KFSCIS Tenure Track Faculty Hiring Committee

13. 2021-2022: Subject area coordinator: BS-CS for Programming: COP-2210, COP-3337,
COP-3530, COP-4338, COP-4226, COP-4520

14. 2021-2022: Capstone or Senior Projects Supervisor

15. 2021-2022: KFSCIS Diversity Advocate for Faculty Hiring

16. 2021-2022: CEC Faculty representative at United Nations Women and Girls in Science
day annual celebrations

17. 2021-2022: Graduate Council

18. 2020-2021: KFSCIS Tenure Track Faculty Hiring Committee

19. 2020-2021: Subject area coordinator: BS-CS for Programming: COP-2210, COP-3337,
COP-3530, COP-4338, COP-4226, COP-4520

20. 2020-2021: Capstone or Senior Projects Supervisor

21. 2020-2021: KFSCIS Diversity Advocate for Faculty Hiring

22. 2020-2021: KFSCIS Faculty representative at United Nations Women and Girls in Science
day annual celebrations

23. 2020-2021: Graduate Council

22



24. 2020-2021: KFSCIS Graduate Committee

25. 2019-2020: CEC Faculty representative at United Nations Women and Girls in Science
day annual celebrations

26. 2019-2020: Graduate Council

27. 2019-2020: KFSCIS Graduate Committee

FIU Microcredential

Remote Teach Ready Badge Summer 2020

Professional Activities

1. Associate Editor for ACM Transactions on Architecture and Code Optimization (ACM
TACO).

2. TPC for USENIX Conference on File and Storage Technologies (USENIX FAST) 2025
with heavy review workload of 15-20 papers.

3. Panelist on a Panel to discuss ML for Storage at HotStorage’24.

4. General Chair for ACM Workshop on Hot Topics in Storage and File Systems (HotStorage)
2024 leading the overall operations of the workshop.

5. TPC for USENIX Conference on File and Storage Technologies (USENIX FAST) 2024
with heavy review workload of 15-20 papers.

6. Program Committee Track chair for the track Performance Monitoring, Modeling, Analy-
sis, and Benchmarking (in Cluster, Cloud and Internet Computing) at 22nd IEEE Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGrid) 2024.

7. Poster chair for the 33nd ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC) 2024.

8. Poster chair for the 32nd ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC) 2023.

9. Publicity chair and TPC for ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage) 2023.

10. TPC and Session chair for ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage) 2022 leading a session on ZNS and SSDs, 2022.

11. TPC for IEEE International Conference on CLOUD Computing, 2022

12. TPC for IEEE International Conference on Distributed Computing Systems (ICDCS),
Machine Learning on or for Distributed Systems, 2022

13. TPC for IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), Performance Modeling, Scheduling and Analysis Track, 2022

14. NSF Panelist for O�ce of Advanced Cyberinfrastructure (CISE/OAC) program

15. NSF Panelist for Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program

16. TPC and Session chair for USENIX Conference on File and Storage Technologies (USENIX
FAST) 2021, leading a session on The SSD Revolution Is Not Over.
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17. TPC and Session chair for ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage) 2021 leading a session on Flash Storage, 2021.

18. TPC and Session chair for IEEE International Symposium on Workload Characterization
(IISWC) 2020, leading a session on System Architecture and Applications

19. TPC for IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2020

20. TPC for IEEE International Performance Computing and Communications Conference
(IPCCC), 2019, 2020

Service as Peer Reviewing

Conferences:

1. IEEE International Conference on Distributed Computing Systems (ICDCS)

2. IEEE/ACM International Symposium on Cluster, Cloud, and Internet Computing (CC-
GRID)

3. ACM Workshop on Hot Topics in Storage and File Systems (HotStorage)

4. International Symposium on High-Performance Parallel and Distributed Computing (HPDC)

5. USENIX Conference on File and Storage Technologies (FAST)

6. IEEE International Parallel & Distributed Processing Symposium (IPDPS)

7. IEEE International Conference on Cloud Computing (IEEE CLOUD)

8. IEEE High Performance Extreme Computing Conference (IEEE HPEC)

9. IEEE International Conference on Green Computing and Communications (GreenCom)

10. International Conference on Massive Storage Systems and Technology (MSST)

11. IEEE International Conference on Big Data (BigData)

12. International Conference on Networking, Architecture, and Storage (NAS)

13. International Conference on Parallel and Distributed Systems (ICPADS)

14. Workshop on Interactions of NVM/Flash with Operating Systems and Workloads (IN-
FLOW)

15. International Conference on Performance Engineering (ICPE)

16. ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA)

17. IEEE/IFIP International Conference on Dependable Systems and Networks (DNS)

18. Big Data and Cloud Performance Workshop at INFOCOM (DCPerf)

19. International Conference on Autonomic Computing (ICAC)

20. International Conference on Computer Aided Design (ICCAD)

21. International Conference on Cloud Computing Technologies and Applications (CloudTech)

22. Field-Programmable Custom Computing Machines (FCCM)

23. International Conference on Computer. Communication and Networks (ICCCN)
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24. IEEE International Performance Computing and Communications Conference (IPCCC)

25. IEEE/ACM International Conference on Utility and Cloud Computing (UCC)

Journals:

1. ACM Transactions on Embedded Computing Systems (TECS), ACM Journal

2. IEEE Transactions on Cloud Computing (TCC), IEEE Journal

3. ACM Transaction on Storage (TOS), ACM Journal

4. IEEE Transactions on Services Computing (TSC), IEEE Journal

5. Simulation Modelling Practice and Theory (SIMPAT), Elsevier Journal

6. Computers, MDPI Journal

7. Future Generation Computer Systems (FGCS), Elsevier Journal

8. IEEE Transactions on Computers (TC), IEEE Journal

9. ACMTransactions on Modeling and Performance Evaluation of Computing Systems (TOM-
PECS), ACM Journal

Society Memberships

1. Member (2014-present) Association for Computing Machinery (ACM)

2. Member (2014-present) Institute of the Electrical and Electronics Engineers (IEEE)

3. Member (2014-present) The Advanced Computing Systems Association (USENIX)

Community Services

1. Volunteering A�liated Faculty, Center for Women and Gender Studies (CWGS), Florida
International University, Miami FL, USA

PERSONAL TRAITS

Highly motivated and eager to learn new things.

Strong leadership skills and innovative approaches.

Ability to work as an individual as well as in group.
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Research Statement
Janki Bhimani, Assistant Professor,

Knight Foundation School of Computing and Information Science, Florida International University
jbhimani@fiu.edu, bhimanijanki@gmail.com · Linkedin · Website · Google Scholar · Mobile: +1(857)991-9868

(Please visit my Website for the most updated information.)

The global datasphere is projected to reach 163 zettabytes by 2025, indicating a profound shift in our daily
lives driven by data. As datacenters adapt to meet escalating computational and storage demands, the challenge of
efficiently managing this abundance of information becomes critical for system architects. My decade-and-a-half-long
research focuses on pioneering simple yet disruptive and efficient solutions for memory management and
storage systems to address this challenge. The goal is to establish robust, parallel, and performant computing
systems capable of thriving in our data-intensive landscape. This work not only aligns with current federal funding
priorities but is imperative for shaping the future, where innovation and efficiency converge to redefine the boundaries
of large-scale data-intensive workloads.

[Publication Decisions.] My work as a faculty member primarily focuses on storage systems, system design and
architecture, modeling and simulation, and cloud computing domains. Consequently, I have directed my efforts towards
the highest-ranked journals in these disciplines, including ACM TOS, IEEE TC, ACM TOMACS, IEEE TCC,
and IEEE TVT. For instance, the IEEE Journal of Transactions in Cloud Computing has an impact factor of 11.1,
and most of these journals publish less than 10% of submitted manuscripts. Due to the often lengthy time-to-press for
journal publications and the time-intensive nature of qualitative research, I frequently target preliminary findings for
highly-selective peer-reviewed conferences and workshops such as HPCA, DAC, DATE, HotStorage, CLOUD,
and HPDC. This approach enables me to disseminate preliminary findings quickly to target audiences while also
building a narrative for subsequent journal publications. Currently, I have 45 peer-reviewed publications, with
20 published after joining FIU in the last five years. I am also the lead inventor of 10 patents. My work has
received multiple Best Paper Awards and nominations for the prestigious IEEE MICRO Top Picks Award and
In Company of Women Award in the Science and Technology category, showcasing its impact. Additionally, my
research is highly cited, with about 1000 citations, an h-index of 16, and an i10-index of 22, reflecting broad influence.
Recognizing the excellent quality of my research, I am a recipient of the NSF CAREER Award, FIU Top Scholar
Award in the category of- Research, Creative Activities, and Award-Winning Publications, and the Outstanding
Research Award by the KFSCIS. I have also been invited to speak on my research by various organizations, including
the Entrepreneurs’ Organization of Miami and industry research labs such as IBM and Samsung Research.

[Research Funding.] In my research, I have achieved significant milestones by securing a total of thirteen grants
valued at over $6 million, with ten of them valued at over $3 million as the lead/sole Principal Investigator from
federal, state, and industry sources such as NSF, Cyber Florida, and Samsung Semiconductors Notably, I
am proud of my recent highly competitive NSF CAREER Award towards designing efficient in-storage indexing
techniques, and NSF CISE Core small award as the sole PI, focusing on designing new memory management
techniques for in-memory analytic frameworks and databases leveraging machine learning (ML). These funding’s
underscores the significance of my research work in the national discourse. Currently, I am awaiting decisions on
five proposals, two of which I lead. Looking forward, my plans involve pursuing large grants from NSF and other
opportunities such as DOE CAREER and AFOSR grants to further advance my research.

[Research Collaborations and Advising.] My commitment to advising and mentoring is reflected in the successful
graduation of a Ph.D. student who is a tenure-track Assistant Professor at Missouri State University and many
more Ph.D. students ready to graduate soon. Over the past five years, I have advised a diverse group, including
eight Hispanics, one Asian American, and three Women. Currently, I am supervising a dynamic team comprising six
graduate and three undergraduate students and I am in process of hiring postdoctoral candidate and one
more graduate student starting Spring 2025. Establishing fruitful collaborations is integral to my research approach.
I have established partnerships with esteemed institutions such as the University of Maryland, University of
Chicago, Argonne National Lab, and Syracuse University, as well as industry leaders like Samsung and IBM
Research, contributing to the advancement of our collective research goals.

[Research Experience and Successes.] My research philosophy is centered on advancing "end-to-end system
design" to maximize the utilization of available resources and effectively address societal challenges. I am deeply
passionate about optimization and emerging technologies. Engaging in interdisciplinary research is a particular interest
of mine, and I consider benchmarking and modeling as essential tools for conducting thorough investigations and
driving disruptive improvements. At a high level, my research has concentrated on improving two critical components
of computer systems: Memory and Storage. Over the last five years as a faculty member, my research contributions
can be categorized primarily into the following three directions.

I/O Behavior Modeling, Performance Prediction and Optimization: In the era of "Big Data," where multiple
data processing applications coexist in data centers, I/O activities exhibit significant variations. The configuration of
existing storage systems, typically done during installation and then permanently maintained, is becoming insufficient.
Modern data processing systems present three key challenges. First, simultaneous operations from multiple applications
create interference, impacting the performance of solid-state drives (SSDs), unlike hard disk drives (HDDs) with limited
bandwidth. Second, while HDD reliability relies on internal mechanical components, SSDs are sensitive to user and
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operating system I/O workloads, necessitating optimal configuration for persistent storage. Third, diverse SSD types,
including multi-stream SSDs and Key-Value (KV) SSDs, come with distinct internal algorithms and parameters.
Selecting and tuning these algorithms based on I/O activities is crucial for optimal performance and flash endurance.
Therefore, the research objective is to model the complex I/O activities of diverse applications, dynamically
tuning the internal algorithm parameters of flash-based SSDs for optimal performance and reliability.

Learning and Management in Tiered Memory Systems: Further, in the past decade, ML has undergone astounding
growth, permeating various industries, including storage systems. To tackle the challenges presented by vast amounts of
data and optimize memory accesses, tiered memory systems are gaining popularity. These systems employ high-speed
memory like DRAM for frequently accessed upper-tier data and slower but larger memories like NVMe NAND flash,
3D-Xpoint, and CXL memories for lower tiers. These systems prove crucial for efficient data management, contributing
to improved performance and efficiency, reducing data access times, and lowering overall computing costs. Thus, we
design novel tiered memory management techniques, leveraging ML’s power and addressing its limits
and overheads as a versatile solution to enhance various aspects, including parameter tuning, task
scheduling, scanning, migration, and allocation, ultimately optimizing performance, Quality of Service
(QoS), and resource utilization in in-memory databases and analytic frameworks.

Towards Efficient In-storage Indexing and Device Endurance: In the domain of in-storage indexing, a concept
originating in the 1990s, the practical implementation has encountered obstacles, as exemplified by Seagate’s 2014
endeavor with Kinetic HDDs, constrained by HDD I/O limitations. However, the prospect of efficient in-storage
indexing has recently gained momentum with flash-based SSDs. Early efforts, including our preliminary research,
demonstrate that the combination of a fast and lightweight KV database or POSIX-compliant file system with a key-
value SSD (KVSSD) performing in-storage indexing outperforms traditional block SSDs. The development of Efficient
In-Storage Indexing Devices (ISIDs) poses challenges that necessitate attention to ensure optimal performance and
functionality. Firstly, the role of storage device models is pivotal in computer systems research, addressing research
gaps related to performance analysis, algorithm development, system evaluation, resource management, and realistic
simulations. The lack of a low-cost open-source research platform hampers rapid adoption. Secondly, the design
of ISIDs for diverse workloads demands meticulous consideration of indexing techniques, query optimization, data
access patterns, and data distribution within the constraints of limited device resources. Therefore, we develop
ISID models that capture internal feature dependencies and support dynamic model calibration. This
aims to develop new index management techniques efficiently utilizing limited on-device resources while
considering flash-specific constraints to optimize endurance and latency for a multi-tenant environment.

In conjunction with the above, my team has embarked on pursuing various other cutting-edge projects. First, we
challenge the assumption that flash-based SSDs are less susceptible to diverse environmental conditions such as vibra-
tions, temperature, and humidity than HDDs. Extensive testing indicates that, even within specified datasheet limits,
short-term exposures exhibit lingering effects, and long-term exposure results in over 30% performance degradation.
This raises concerns in datacenter performance, affecting tail latency and Service Level Agreements (SLAs) but has
even more crucial implications on automotive operating in harsh conditions, with its transition to use more and more
complex electronic control systems (ECS) with integrated flash. Leveraging these insights, with a particular focus on
the impact of temperature on the reliability of electronic control systems (ECS), we study automotive applications with
multi-core processing architectures, taking into account temperature considerations and system-level reliability. We
optimize system-wide reliability through a mathematical programming model and a genetic algorithm,
accurately predicting system-wide mean-time-to-failure (MTTF) with substantial speed-ups, thereby
enhancing reliability analysis.

Second, another initiative involves critically examining wear leveling in SSDs, addressing challenges,
assessing effectiveness, and advocating for capacity variance. Third, in the space of Systems-for-ML,
our team is designing new models to enhance data storage and ingestion pipelines for ML workloads.
We are also investigating novel approaches to optimize Deep Neural Network (DNN) checkpointing and
versioning beyond traditional file I/O methods and designing models. Forth, in the space of ML-for-Systems, we
are leveraging disciplined data science to revolutionize decision-making in storage I/O. Fifth, we are working
towards optimizing data spilling in distributed query engine. Lastly, my commitment extends to advocating
for positive change in educational systems through the NSF HSI project VOCES - Voices for Organizing Change
in Educational Systems, leading efforts in the direction of social media impacts and improving course curriculum.
Thus, to conclude, my diverse undertakings showcase my comprehensive engagement in advancing knowledge and

addressing pivotal challenges across multiple facets of data storage and computing as well as the education system.

[Future Plan.] In my envisioned trajectory, I am committed to further solidifying my standing as an expert in memory
management and storage systems, with a dedicated focus on emerging technologies. My work will continue to contribute
to and influence the national discourse around efficient, reliable, and enduring data management techniques. Each
successive phase of my research is strategically crafted to make practical and measurable strides towards optimizing
data management. My dedication to solving important research problems and consistently publishing in high-quality
venues remains unwavering. I plan to enhance my recruitment strategies, aiming to intentionally diversify my doctoral
student cohort. Looking forward, I aspire to leverage the national network I have cultivated to foster collaborations on
a broader scale. Initiating endeavors for large-scale, multi-institutional funding is a pivotal goal, intended to amplify
the impact of my research endeavors and revolutionize data management practices.
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Designed and taught many core and effort-intensive courses, achieving an average student feedback
rating of 4.13/5. Secured Quality Matters (QM) certification for all my courses. Led curriculum update
efforts to design and integrate a Data Structures course taught in multiple programming languages. Implemented
module-based content distribution with live feedback, and class projects on Chameleon cloud platform.

Teaching Philosophy
As an Assistant Professor, I am thrilled by the opportunity to fully integrate teaching and mentoring into my daily
routine. My goal is to motivate students to acquire and apply knowledge, teach them critical thinking skills to solve
newly occurring problems in their fields of study, and assist them in building career foundations to succeed after
graduation. I emphasize to students that the specifics of all the programming languages, libraries, frameworks, and
deployment services that are in vogue at the moment can change at a rapid pace. All new technologies are easy to
learn once students have developed strong foundations. Apart from the technical depth of content, I also encourage
everyone in the classroom to express their thoughts. To bring technical subjects to life, I teach using a combination of
various techniques such as whiteboard discussions, PowerPoint presentations, and audio-visual illustrations, such as a
demo of sorting algorithms using UNO cards. A sample of my demonstrative lecture can be found here.

I believe that students learn more by thinking than by memorizing. Therefore, before delving into any new topic,
I explain the key challenges and questions that initially motivated its exploration and how various ideas evolved over
time to nurture problem-solving capabilities. For example, in this lecture on solid-state drives, I first explain why
students should learn about the topic, highlighting its exciting advantages and key challenges that motivated various
branches of different research works.

In the growing and ever-changing field of computer science and engineering, I view teaching not only as the
transmission of knowledge to students but also as a means of inspiring independent inquiry and learning. It is a
collaborative process that fosters improvement for both students and me. To illustrate how I embody these principles
in my lectures, consider this lecture on NAND cells within SSDs. As students gain insights into the complexities of
NAND cells, I, too, gain a deeper understanding through the process of explanation, fostering a continuous cycle of
learning and teaching in the ever-changing landscape of computer science and engineering. Recognizing the uniqueness
of each student, I have learned and will continue to tailor my mentoring style to bring out the best in every individual.

Teaching Experience
At FIU I have designed two courses from scratch and taught multiple semesters of graduate and undergraduate
courses in different modalities, including in-person, certified hybrid, and certified synchronous and asynchronous online
formats. The courses I taught include Storage Systems and Data Structures, Independent Study, Senior Project, and
Capstone Project. For all my courses, I have developed module-based content that provides the necessary scaffolding
to span the space for better understanding of the concepts learned. With input from peers at the Center for the
Advancement of Teaching (CAT), colleagues within our department, teaching assistants, and student feedback, I have
taken several measures to enhance the teaching process. These include developing a precursor covering basic concepts
before the start of the course, creating a mechanism to incorporate student feedback during the same semester, and
crafting a well-structured syllabus with course-level objectives. Additionally, I have outlined module-level objectives
and explained their alignment with course-level objectives, improved course content, and designed clear rubrics for all
assignments, making it easier for students to understand expectations. Next, I elaborate the content of some of my
courses, highlighting my favorite parts.

Storage Systems (CIS 5346): Teaching the advanced graduate-level Storage Systems course has been a
stimulating academic pursuit. This course delves into a diverse array of topics, encompassing the introduction to stor-
age systems, storage devices (Hard Disk Drives, Solid State Drives), storage system components, storage architecture,
large-scale distributed storage systems, datacenter storage, non-volatile memory (NVM), reliability and fault tolerance
(RAID Systems), performance, file-systems, operating systems storage management, memory and storage concepts
(Caching, Consistency, and Deduplication), disks and scheduling, and emerging storage technologies and future trends.

One of the key challenge to efficiently teach this course extends beyond disseminating theoretical knowledge; it
lies in cultivating a profound curiosity for the rapidly evolving landscape of storage technologies. Through hands-on
projects and real-world case studies, my aim is to facilitate a dynamic learning experience reflective of the practical
demands within the field. The class structure combines traditional instruction with seminar-style learning, fostering
a dynamic educational environment. Each student is tasked with extensively preparing and leading discussions on a
research paper, enhancing their ability to critically evaluate and present findings to their peers. This multifaceted
approach aims to nurture a cohort of learners equipped not only with theoretical comprehension but also with a
problem-solving mindset, preparing them to confront the evolving challenges in the technological landscape.
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The most recent offering of this course underwent evaluation by students through the Student Perceptions of
Teaching Survey (SPOTs), yielding a commendable mean score of 4.64/5. Notable comments from students include,
"The most successful aspect of this course is the detailed information in the lectures about the objectives and executions
of each module and great instructor-student interactions." Another student mentioned, "The professor’s availability
and commitment towards every student was commendable." Additionally, a student highlighted, "This was the best
online course that I have taken so far, expertly crafted, and the pacing of this course was good." Lastly, a student
appreciated the practicality, stating, "The way we could relate the course to real-life scenarios will definitely help me
never forget what I learned. Course material and discussions are thought-provoking and interesting." The positive
feedback reflects the effectiveness of the course structure and content delivery, as well as my commitment to facilitating
an engaging and enriching learning experience.

Data Structures (COP 3530): Teaching COP 3530 has been fulfilling, impacting students’ job interviews.
This course starts with a "Brush-up Your C++" module and progressing to Big-O complexity, stacks, queues, linked
lists, searching and sorting algorithms, graph and tree algorithms, recursion and backtracking, and hash tables.
The curriculum includes quizzes, discussions, assignments, and a final exam, incorporating real-world applications
and practical problem-solving scenarios. With the aim to enhance students’ understanding of memory management,
particularly beneficial for system-related courses like operating systems and high-performance computing, I designed
this course from scratch in C++. Having completed the hybrid certification process, I taught my Data Structures
course in a hybrid modality for multiple semesters. Initially, I found it challenging to motivate students for out-of-class
components. To address this, I conducted surveys and polls on each module to gauge student understanding of various
out-of-class topics. Based on the poll responses, I curated the time I spent on each topic and revised the topics that
most students found challenging. This approach significantly improved student interest and performance.

COP 3530 earns its "effort-intensive" label due to students’ substantial growth expectations post-course and a high
enrollment rate. In Fall 2023, my SPOTs rating was 4.19/5. Students praised my class for being "well-structured,"
with one noting, "The most successful aspect is probably having discussions for each Module." Another student
commended the "Professor’s teaching proficiency" with a "5+ stars" rating, emphasizing, "The professor is great at
conducting and organizing an online course." My "video lectures" were highlighted for their "easy-to-understand qual-
ity." Overall, the course was recognized for its "balance, pacing, and real-world applicability, making it a transformative
and great learning experience."

Independent Study (CIS 5900 and CIS 3900): In my role as the instructor for Independent Study courses
CIS 5900 and CIS 3900, my primary responsibility is to facilitate a self-directed and personalized learning journey for
each student. Through regular individual meetings, I offer tailored guidance and support, recognizing and addressing
the unique academic goals and interests of each participant. The course framework includes assigned readings that lay
the groundwork for independent investigations, culminating in students producing comprehensive reports documenting
their research findings. The inherent challenges of this instructional role involve instilling a sense of accountability
and motivation in students navigating their project independently. Achieving the delicate balance between providing
sufficient guidance and allowing for student autonomy is critical to ensuring a fruitful independent study experience.
Equally important is maintaining open communication channels and promptly addressing any issues that may arise
during the independent learning process. These efforts collectively contribute to fostering a supportive and enriching
educational environment within the framework of independent study.

Overall, many students have found success in securing co-op, internship, and full-time opportunities with top
industries such as Google, Microsoft, Samsung, etc., after taking my courses and working with me. Witnessing my
students’ achievements brings me great joy, and I take pride in their success.

Mentoring Experience
In my role as a mentor, I have been deeply committed to fostering an environment where students can not only gain
knowledge but also thrive in their research pursuits. I draw inspiration from the supportive mentors who guided me
throughout my career. I aim to pass on not just information but also provide a nurturing and engaging space for
students to develop their research abilities. Having mentored both undergraduate and graduate students, I understand
the importance of effective communication tailored to each student’s needs. I recognize that the level of involvement in
technical details varies among students, and I strive to strike a balance between offering prompt feedback and allowing
for independent exploration. My goal is to nurture students’ research independence while creating a collaborative
and inclusive atmosphere. In terms of academic supervision, I take pride in the success of my graduated Ph.D. and
M.S. students who have secured positions in reputable companies or obtained tenure-track positions. Currently, I am
advising three graduate and three undergraduate students, each delving into innovative research topics encompassing
storage systems, memory management, ML-for-Systems, Systems-for-ML, and cloud computing. Additionally, I ac-
tively participate in Ph.D. committees for students from various universities, contributing to their academic growth.
My mentoring extends to independent study projects, where I guide students through topics such as hybrid memory
management and SSD reliability. In REU programs, I provide support and guidance to students, fostering a supportive
learning environment. Furthermore, I offer direction to students in capstone projects, ensuring their successful comple-
tion and preparing them for future challenges. Overall, my mentoring experiences reflect a commitment to students’
growth, emphasizing collaboration, communication, and a focus on their individual development as researchers.

2



Service Statement
Janki Bhimani, Assistant Professor,

Knight Foundation School of Computing and Information Science, Florida International University
jbhimani@fiu.edu, bhimanijanki@gmail.com · Linkedin · Website · Google Scholar · Mobile: +1(857)991-9868

(Please visit my Website for the most updated information.)

Contributed to FIU’s growth, serving on the Faculty Hiring Committee, Awards Committee, CEC Fac-

ulty Council, Graduate Committee, Subject Area Coordinator, Graduate Program Committee, DEI

Committee, and as Seminar Series Coordinator. Led roles such as Associate Editor for ACM TACO Jour-
nal, General Chair, Publicity Chair for ACM HotStorage, Program Committee Track Chair for CCGRID,
and Poster Chair for HPDC. Extensive service as a TPC member for conferences like USENIX FAST, IPDPS,
CLOUD, etc. Volunteering at the Center for Women and Gender Studies. Received Grace Hopper Celebra-

tion of Women in Computing (GHC) Faculty Scholarship for two years and Certificate of Completion from
ASEE DELTA Junior Faculty Institute. Participated in STRIDE workshop for hiring, tenure, and promotion,
Diversity Advocate workshop, and Bystander Leadership workshop.

Service Philosophy
Service is the bedrock of our academic community, propelling us toward excellence. Beyond obligation, it embodies
our commitment to a collegial environment and self-governance. My primary commitment is active engagement in
KFSCIS, CEC, and FIU, fostering positive change. I aim to broaden my impact globally in system design and storage
system research, connecting with researchers to bring valuable insights back to our academic home. I view my service
commitments not as burdens but as golden opportunities for learning, growth, and the demonstration of my inherent
value to the academic community. Each engagement is a chance to refine my leadership skills, to cultivate relationships,
and to contribute meaningfully to the success of the University. As a steward of progress, I am dedicated to shaping
our academic future through unwavering commitment to service.

Service Roles and Experience
School Service: My commitment to service within the KFSCIS is evident through my extensive involvement in
various roles, each contributing significantly to the vibrancy and excellence of our academic community. Serving
on the KFSCIS Tenure Track Faculty Hiring Committee for three years in past five years has been a distinguished
responsibility, offering me the opportunity to actively shape the trajectory of our department. Throughout these past
few years, we faced the substantial task of hiring for multiple open tenure track positions, entailing a considerable
amount of work. Within each year of service, this included efforts to advertise faculty openings in both traditional and
non-traditional minority community venues, a meticulous review of over 200 applications, the orchestration of multiple
rounds of Zoom interviews for approximately 25 candidates, and frequent committee meetings, often exceeding twice a
week. My role extended beyond the virtual interview process to coordinating in-person interviews with candidates. For
many faculty interview candidates, I willingly took on various duties, from facilitating morning pickups to guiding them
through a series of meetings and talks, accompanying them for lunch, showcasing our wonderful campus, organizing
dinner engagements, exploring various areas around Miami based on their living preferences, and ensuring their safe
return to the hotel in the evening. Highlighting the significance of diversity and equity in the faculty selection process,
I actively fostered an inclusive environment, recognizing the value that diverse perspectives bring to our academic
community. To prepare for this crucial role, I engaged in workshops and certificate programs, such as ASEE DELTA
Junior Faculty Institute, STRIDE workshops for hiring, STRIDE workshops for tenure and promotion, Diversity
Advocate workshop, and Bystander Leadership workshop. The noteworthy female faculty additions to our faculty
during the two years of my service include Dr. Ruimin Sun and Dr. Agoritsa Polyzou, underscoring the success in
enriching the diversity of our academic team. In these years of my intense commitment to the Tenure Track Faculty
Hiring Committee, we were successful in hiring eight new tenure track faculty members. Thus, I not only contributed
to the growth of our department but also played a pivotal role in cultivating a faculty body that reflects a broad
spectrum of expertise and backgrounds essential for academic excellence.

Furthermore, as a member of the KFSCIS Graduate Committee for two years, I actively contributed to the review
of Ph.D. student applications and met with many of them to address questions about applying to FIU. Our decisions
as members of the graduate committee significantly impact the academic journey of our graduate students, ensuring
that we maintain a high standard of education and support for their research endeavors. Additionally, I served on
our Diversity, Equity & Inclusion (DEI) Committee for one year, where I led the process of preparing the first draft
of the 2025-2028 NSF Broadening Participation (BPC) plan. In my role as the Subject Area Coordinator for the
BS-CS Programming track, responsible for courses such as COP-2210, COP-3337, COP-3530, COP-4338, COP-4226,
and COP-4520, I consistently aimed to provide comprehensive and timely reports by reviewing course evaluations.
During my two years of service in this role, we underwent ABET evaluations, and I dedicated my best efforts to
meet with evaluators and provide them with all requested materials to facilitate the process. Additionally, I served
as the Seminar Series Coordinator, where coordinating the KFSCIS Seminar Series transcends mere event planning.
This responsibility involves intricate logistics and hosting distinguished speakers, including Turing award winners and
members of national academies. The series not only fosters intellectual exploration but also connects our academic
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community with influential figures in computer science, broadening our collective knowledge and impact. I also served
as a member of the KFSCIS Awards Committee, actively participating in the recognition of outstanding achievements
within our academic community.

College Service: At the college level, my commitment to service has manifested through my engagement in various
roles over the past five years. Serving as the CEC Faculty Council Representative, I actively participated in discussions
and decision-making processes, representing the voice and concerns of the faculty within the College of Engineering and
Computing (CEC). This role has provided me with valuable insights into the broader academic landscape of the college,
allowing me to contribute to collegial governance and the enhancement of our academic programs. Simultaneously,
my involvement on the Graduate Council has allowed me to play a pivotal role in shaping the policies and initiatives
related to graduate education within the college. By contributing to discussions and decisions at this level, I have
been able to actively advocate for the interests of graduate students and ensure the maintenance of high standards in
our graduate programs. As the faculty representative at the United Nations Women and Girls in Science Day annual
celebrations, I have extended my commitment to service beyond the confines of the college. Actively participating in
events and activities dedicated to promoting the role of women and girls in science, I have contributed to fostering
an inclusive and supportive environment within the college and beyond. These roles collectively demonstrate my
commitment to service, collegial governance, and fostering an inclusive academic environment.

University Service: My commitment to service extends beyond school and college-level responsibilities, encompass-
ing initiatives that actively contribute to the dynamic and inclusive ethos of the university. I have actively engaged in
professional development, completing a hybrid program to become a certified hybrid instructor, embracing innovative
teaching methods for a modern academic landscape. In addition, I volunteer as affiliated faculty for the Center for
Women and Gender Studies (CWGS), where I dedicate efforts to promote women in computer science. This role allows
me to contribute to the broader discourse on gender diversity in STEM fields and advocate for inclusivity within the
university community. Each responsibility not only contributes to the betterment of our department, college, and
university but also reflects my steadfast commitment to the values of service, collaboration, and excellence.

External Service: In external service, my active engagement across various roles underscores a dedicated commit-
ment to advancing the fields of storage systems, cloud computing, distributed computing, and performance modeling.
In my leadership roles, I serve as the Associate Editor for ACM Transactions on Architecture and Code Optimization
(TACO) Journal, General Chair for the ACM Workshop on Hot Topics in Storage and File Systems (HotStorage) in
2024, spearheading the workshop’s overall operations and contributing to its success. Simultaneously, I served as the
Program Committee Track Chair for the Performance Monitoring, Modeling, Analysis, and Benchmarking track at the
22nd IEEE International Symposium on Cluster, Cloud, and Internet Computing (CCGrid) in 2024. My involvement
extended to serving as the Poster Chair for the 33rd and 32nd ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC) in 2024 and 2023, respectively. I played a crucial role as the Publicity
Chair TPC for the ACM Workshop on Hot Topics in Storage and File Systems (HotStorage) in 2023. Additionally,
I assumed roles as TPC and Session Chair for both the ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage) and the USENIX Conference on File and Storage Technologies (FAST) in 2022, leading sessions on topics
such as ZNS and SSDs, "The SSD Revolution Is Not Over", and "Storage Technologies." Finally, I served on multiple
panels over last couple of years such as panel on the topic of "Storage and Machine Learning - What can we learn
from each other?" along with Assaf Eisenman (Meta), Zhichao Cao (ASU), and Erez Zadok (Stony Brook).

Parallel to these journal and conference leadership commitments, my dedication to peer reviewing is evident across
prestigious venues. I took on the demanding role of Technical Program Committee (TPC) member for the USENIX
Conference on File and Storage Technologies (FAST) in multiple years, handling a substantial review workload com-
prising 15-20 papers. I served on the TPC of IEEE International Conference on Distributed Computing Systems
(ICDCS), IEEE/ACM International Symposium on Cluster, Cloud, and Internet Computing (CCGRID), ACM Work-
shop on Hot Topics in Storage and File Systems (HotStorage), International Symposium on High-Performance Parallel
and Distributed Computing (HPDC), IEEE International Parallel & Distributed Processing Symposium (IPDPS), and
more over the last five years. My contributions also extend to reviewing papers submitted to reputable journals like
IEEE Transactions on Cloud Computing (TCC), ACM Transactions on Storage (TOS), IEEE Transactions on Services
Computing (TSC), and others. Beyond conferences and journals, I serve as an NSF panelist for the Cyberinfrastruc-
ture for Sustained Scientific Innovation (CSSI), Office of Advanced Cyberinfrastructure (OAC), and Computer and
Information Science and Engineering (CISE) programs, demonstrating my commitment to broader research initiatives.

Engaging in outreach, I serve as a guest speaker to inspire scholars in programs like the flit-path scholars’ program
and the Women in Cybersecurity (WiCys) Student Chapter. I have also delivered invited talks on my research at
high-impact events hosted by organizations such as the Miami Entrepreneurs’ Organization (EO), IBM Research,
and Samsung Research. Moreover, I prioritize continuous professional development, completing a hybrid program
to become a certified hybrid instructor. Acknowledging the importance of integrating scholarship, teaching, and
service, I obtained a certificate of completion from the ASEE DELTA Junior Faculty Institute. Further enhancing
my perspective, I have been awarded faculty scholarships to attend the Grace Hopper Celebration of Women in
Computing (GHC) for two consecutive years. These experiences collectively enrich my capabilities and contribute to
my multifaceted role as an educator and researcher.
[Future Plans:] Moving forward I plan to continue to support endeavors at all university levels and leverage existing
relationships to extend my national and international involvement in the research community.
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Learning-Based Dynamic Memory Allocation
Schemes for Apache Spark Data Processing

1

2

Danlin Jia , Li Wang, Natalia Valencia, Janki Bhimani, Bo Sheng, and Ningfang Mi3

Abstract—Apache Spark is an in-memory analytic framework4
that has been adopted in the industry and research fields. Two mem-5
ory managers, Static and Unified, are available in Spark to allocate6
memory for caching Resilient Distributed Datasets (RDDs) and7
executing tasks. However, we find that the static memory manager8
(SMM) lacks flexibility, while the unified memory manager (UMM)9
puts heavy pressure on the garbage collection of the JVM on which10
Spark resides. To address these issues, we design a learning-based11
bidirectional usage-bounded memory allocation scheme to support12
dynamic memory allocation with the consideration of both memory13
demands and latency introduced by garbage collection. We first14
develop an auto-tuning memory manager (ATuMm) that adopts15
an intuitive feedback-based learning solution. However, ATuMm16
is a slow learner that can only alter the states of Java Virtual17
Memory (JVM) Heap in a limited range. That is, ATuMm decides18
to increase or decrease the boundary between the execution and19
storage memory pools by a fixed portion of JVM Heap size. To20
overcome this shortcoming, we further develop a new reinforce-21
ment learning-based memory manager (Q-ATuMm) that uses a22
Q-learning intelligent agent to dynamically learn and tune the23
partition of JVM Heap. We implement our new memory managers24
in Spark 2.4.0 and evaluate them by conducting experiments in a25
real Spark cluster. Our experimental results show that our memory26
manager can reduce the total garbage collection time and thus27
further improve Spark applications’ performance (i.e., reduced28
latency) compared to the existing Spark memory management29
solutions. By integrating our machine learning-driven memory30
manager into Spark, we can further obtain around 1.3x times31
reduction in the latency.32

Index Terms—JVM memory management, distributed data33
processing, machine learning, Apache Spark, Q-learning.34

I. INTRODUCTION35

THE unprecedented proliferation of data has triggered a sig-36

nificant development of scalable analytics stacks in recent37

years. Developers and researchers strive to boost data-processing38
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speed in hardware and software. However, processing a massive 39

volume of data has entirely relied on the performance of com- 40

puting facilities and the efforts of users and can only achieve a 41

suboptimal performance [1]. Thus, distributed frameworks (e.g., 42

Hadoop [2]) that share computational resources on a cluster have 43

been proposed to handle the overwhelming data. However, it 44

has been noticed that in Apache Hadoop, many I/O requests are 45

generated for accessing the intermediate data, To address this 46

issue, in-memory analytic frameworks (e.g., Apache Spark [3]) 47

have been developed to improve data processing performance. 48

Apache Spark [3], one of the most successful in-memory ana- 49

lytic frameworks, has been going through a boom in the past few 50

years. Specifically, Apache Spark implements an abstraction of 51

a data structure called Resilient Distributed Datasets (RDD) [4], 52

which can be manipulated in parallel on different executors. 53

Each RDD is created from an input dataset or another RDD and 54

is immutable. Based on these two features, Spark builds a lineage 55

of an application to track each computation stage and recover 56

from faults in a tolerant way. Furthermore, Spark stores interme- 57

diate data (i.e., RDDs) in RAM, which reduces communication 58

overhead between Spark executors, especially for some iterative 59

and interactive machine learning applications. In this way, Spark 60

avoids the overhead of I/O operations and improves overall 61

performance. Therefore, one of the most crucial factors in Spark 62

is the management of memory resources. An effective memory 63

management scheme can shrink an application’s latency (i.e., 64

the total execution length) and improve performance dramati- 65

cally. Unfortunately, Apache Spark hides the default scheme in 66

memory management from users, who have few opportunities 67

to monitor and configure the memory space. 68

In this work, we first investigate two existing Spark memory 69

managers: Static memory manager (SMM) and Unified memory 70

manager (UMM). Specifically, SMM applies predefined config- 71

urations to allocate fixed memory partitions for Spark applica- 72

tions, which heavily relies on the user’s efforts and knowledge 73

of the application’s characteristics for memory optimization. On 74

the other hand, UMM can dynamically allocate memory based 75

on the run-time memory demands. However, UMM introduces 76

heavy Garbage Collection (GC) as it tends to overprovision 77

memory for runtime objects. We further run representative data 78

processing benchmarks to collect the latency of applications 79

under these two memory managers. We find that the Spark 80

performance is significantly affected by the memory partition, 81

which may lead to either long Java garbage collection (GC) or 82

long delay in intermediate data access. Based on the analysis 83

of the defects of the existing memory managers, we design a 84
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learning-based bidirectional usage-bounded memory manage-85

ment scheme that monitors the run-time execution performance86

and dynamically re-allocates memory space to Spark execution87

and RDD storage. We first propose a basic version of our new88

autotuning memory manager, named ATuMm, which leverages89

an intuitive feedback-control solution to improve Spark perfor-90

mance by dynamically adjusting memory pools with a fixed91

adjustment step.92

To obtain an optimal learning speed, the users of ATuMm93

need to tune the adjustment step manually. However, it is not94

trivia to configure this adjustment step. Significantly when the95

memory demands of an application vary frequently, an inap-96

propriate adjustment step might limit the benefit of ATuMm.97

To address this issue, we further propose a Q-learning-based98

Spark memory manager, called Q-ATuMm, which aims to99

develop an intelligent agent to help make decisions of the100

adjustment step automatically. The goal of Q-ATuMm is to101

utilize a machine learning algorithm (e.g., Q-learning [5])102

to adjust memory partitions in Spark dynamically and effi-103

ciently. We remark that Q-learning offers several advantages104

compared to other machine learning algorithms, especially in105

scenarios involving sequential decision-making and dynamic106

environments.107

The main contributions of this work are as follows.108 ! Understanding of two existing memory managers in Spark:109

We study the infrastructure of two Apache Spark memory110

managers to understand how these two managers allocate111

memory space to the storage and execution pools. We fur-112

ther conduct real experiments to analyze the performance113

of these two managers.114 ! Design and implementation of an auto-tuning memory115

manager: We propose a new Spark memory manager,116

named ATuMm, that dynamically tunes the size of storage117

and execution memory pools based on the performance118

of current and previous tasks. We implement and evaluate119

ATuMm in Spark 2.4.0 and show that our new memory120

manager significantly improves the Spark performance.121 ! Optimization of memory management by developing an122

intelligent agent: We develop an intelligent agent by using123

the Q-Learning algorithm and integrate the agent in Spark124

as a new memory manager, named Q-ATuMm. We show125

that Q-ATuMm can further improve the performance via126

our new machine learning agent for both iterative data127

processing applications and ad-hoc database queries.128 ! Analysis of memory usage and GC of Spark memory man-129

agers: We investigate the execution memory usage and130

garbage collection of all four Spark memory managers (i.e.,131

SMM, UMM, ATuMm, and Q-ATuMm). We discover that132

both ATuMm and Q-ATuMm decrease garbage collection133

time by preventing overloaded execution memory. Also, we134

observe that Q-ATuMm has lower latency than ATuMm.135

In the remainder of this paper, we will discuss the issues136

of two existing memory managers and related work which137

motivates our design of a new memory management scheme in138

Section II. In Section III and Section IV, we present the detailed139

algorithm and the evaluation of our two new memory managers.140

Conclusion is presented in Section V.141

Fig. 1. Memory partition of spark memory managers.

Fig. 2. Latency of application under SMM and UMM. SMM increases storage
fraction from 10% to 90%.

II. MOTIVATION AND RELATED WORK 142

In this section, we study the performance of Spark applica- 143

tions managed by two existing Spark memory managers (i.e., 144

SMM and UMM). In both memory managers, as shown in Fig. 1, 145

a portion of Java heap (i.e., memory in the dashed rectangle) is 146

dedicated for processing Spark applications (called Accessible 147

Memory), while the rest of memory is reserved for Java class 148

references and metadata usage (called User Memory). Acces- 149

sible memory is further divided into two partitions, Storage 150

Memory and Execution Memory. The boundary between the 151

storage memory and execution memory is fixed (i.e., static) 152

in SMM, but flexible in UMM. Storage memory is used for 153

caching RDDs, while execution memory is used for runtime task 154

processing. If storage memory is already fully utilized when a 155

new RDD needs to be cached, some old RDDs will be evicted 156

according to the LRU (Least Recently Used) algorithm. On the 157

other hand, if execution memory is full, all intermediate objects 158

generated at runtime will be serialized and spilled into the disk 159

to release memory space for subsequent task processing. 160

A. SMM: Static Memory Partition Analysis 161

To understand how memory partition can affect Spark per- 162

formance, we conduct a set of experiments in a Spark cluster 163

consisting of four homogeneous workers (see the setup in Sec- 164

tion IV-B), with PageRank [6] as a representative benchmark. 165

We set the boundary, which we also refer to as storage fraction 166

(i.e., the ratio of storage memory to accessible memory), from 167

10% to 90% of accessible memory space under SMM. Since the 168

total accessible memory dedicated to Spark applications remains 169

constant, execution memory is decreased when storage memory 170

is increased. 171

Fig. 2 first illustrates the experiment results for SMM with 172

different storage fractions. We can observe that the Spark perfor- 173

mance varies with different memory partitions. Intuitively, if the 174

storage memory is too small to cache RDDs that will be reused in 175

the following computations, the RDD processing time cannot be 176
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Fig. 3. GC time comparison. SMM increases storage fraction from 10% to
90%.

saved. On the other hand, if we assign too much space to storage177

memory, then the confined execution memory pool may trigger178

a high overhead of I/O communications. However, neither one179

of these two effects dominates the other, and the resulting joint180

performance depends on the characteristics of the workload. As181

shown in Fig. 2, the latency is not a monotonic function of the182

storage memory size. Therefore, we conclude that SSM yields183

varying performance with different storage fractions and cannot184

automatically achieve optimal performance.185

B. Static VS. Dynamic: Latency Comparison186

SMM cannot fit all kinds of workloads well because of187

its lack of flexibility. Compared with SMM, UMM allocates188

memory resources dynamically according to resource demands.189

Furthermore, UMM gives a higher priority to execution memory190

than to storage memory. Execution memory can force the storage191

memory pool to shrink if storage memory exceeds 50% of total192

accessible memory, even if it is fully utilized. Based on this193

mechanism, UMM guarantees sufficient memory for executing194

run-time tasks, which avoids the content of execution memory195

from being spilled into the disk to the greatest extent.196

We find that UMM still cannot consistently achieve the best197

performance, although it strives to adjust the storage fraction198

based on resource demands dynamically. For example, the last199

bar in Fig. 2 further shows the latency of UMM. We can see200

that UMM does help improve the performance by obtaining201

lower latency than SMM with some storage fractions (e.g., 10%202

and 50%). Whereas UMM cannot beat SSM with a storage203

fraction of 20% and 70%∼90%, and thus cannot achieve optimal204

performance.205

C. UMM Limitation: GC Impact206

To explore the cause of UMM’s ineffectiveness, we conduct a207

set of experiments to investigate the impact of garbage collection208

(GC) on Spark application latency. We plot the GC times of209

SMM with different storage fractions and that of UMM in Fig. 3.210

We observe that SMM has a much lower GC time when storage211

fraction is set to 20%, 30%, and ≥ 70%. In contrast, the GC212

time under UMM is as high as 120 seconds, about six times the213

lowest GC time obtained by SMM with a storage fraction of214

90%. By combining the results in Figs. 3 and 2, we note that the215

GC time has considerable impacts on Spark performance and216

UMM’s performance degradation results from such a long GC217

time.218

We discover that long GCs occur under UMM because UMM 219

expands the execution memory pool aggressively, resulting in 220

a large amount of intermediate data in execution memory. The 221

Java garbage collector then needs to maintain these in-memory 222

intermediate data and thus increases the overall GC time. Such 223

high GC time finally introduces extra latency to a Spark appli- 224

cation’s execution. Besides, there exist no explicit methods to 225

eliminate these long GCs by configuring UMM by users. This 226

observation motivates us to consider both GC time and execution 227

time for dynamically adjusting memory partition. The impact 228

of GC on Spark’s performance is also investigated in existing 229

works, which will be discussed in Section II-E. 230

D. Need for Learning-Based Solutions 231

The basic version of our new memory manager (ATuMm) is 232

designed based on an intuitive feedback-control solution, which 233

uses the current task’s execution as the feedback to decide the 234

increase or decrease in the boundary between the execution and 235

storage memory pools with a fixed adjustment step. To obtain 236

an optimal learning speed, the user must manually configure 237

the adjustment step, which requires pre-knowledge about the 238

workload and the system characteristics. Even with an optimal 239

adjustment step, our ATuMm may not consistently achieve 240

the best performance. One reason is the fixed adjustment step 241

that cannot work well for applications with varying memory 242

demands. Another reason is that ATuMm makes the tuning 243

decisions heavily depending on the execution status of the 244

current task. Motivated by the above limitations, we need to 245

design a more comprehensive learning solution that can have an 246

intelligent agent to “smartly” calculate rewards for dynamically 247

tuning the adjustment step and thus optimizing the learning 248

speed. We select Q-learning algorithm as our intelligent memory 249

management agent for the following reasons. First, Q-learning is 250

model-free, meaning it doesn’t require a complete understanding 251

of the underlying system dynamics. This makes it suitable 252

for situations where the environment is complex, uncertain, 253

or difficult to model accurately. Second, Q-learning employs 254

temporal difference learning, allowing it to learn from each 255

individual interaction with the environment. This characteristic 256

makes it well-suited for online learning and environments where 257

data arrives sequentially. Third, compared to other powerful but 258

complicated ML/DL models, i.e., convolutional neural networks 259

and transformers, Q-learning is light to integrate with existing 260

systems and offers low learning overhead. 261

E. Gap in the Existing Works 262

We summarize existing works in Table I. MEMTUNE 263

presents an algorithm that adjusts memory allocation based 264

on the characterizations of tasks (i.e., storage-sensitive or 265

execution-sensitive). This work considers the impact of JVM on 266

Spark performance to decide how to balance memory allocation 267

for obtaining a good performance. But, this work only focuses 268

on analyzing the sensitivity of tasks and takes different actions, 269

such as reserving more memory for storage requirements if tasks 270

are storage-sensitive. Another work DSMM, dynamically sets 271

the storage fraction by simply comparing the size of the data set 272
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TABLE I
COMPARISON OF EXISTING SPARK MEMORY OPTIMIZATION WORKS

Fig. 4. New memory allocation scheme architecture.

with its memory usage. Compared to our work, these two works273

fail to track the memory requirement diversity at run-time, which274

still relies on preknowledge of the application’s characteristics.275

SMBSP applies Artificial Neural Network (ANN) to config-276

ure Spark’s parameters automatically, including computation,277

cache, and storage configurations. MLAT is another work that278

utilizes machine learning to auto-config Spark’s parameters.279

This work learns proper configurations for different Spark280

clusters as well. However, these two works optimize Spark’s281

performance at a coarser level and lack consideration of runtime282

workload characteristic adjustment compared to our work. We283

also note that our work contributes to optimizing Spark’s caching284

logic and can be adapted easily to [9] and [10].285

PokéMem and MCS consider the impact of GC on Spark’s286

performance and strive to optimize memory management via287

controlling GC. PokéMem focuses on reducing memory pres-288

sure by estimating the data size of objects created by third-party289

libraries. However, the estimation model is data structure- and290

library-dependent. MCS is close to our work which defines291

constraints to limit the priority of execution memory. However,292

it lacks dynamic adjustment of these constraints.293

III. NEW LEARNING-BASED MEMORY MANAGER DESIGN294

In this section, we present our new learning-based memory295

allocation scheme, which aims to improve the overall latency296

for Spark applications by considering both resource demands297

and garbage collection impact in dynamic memory resource298

allocation. Fig. 4 shows the overview of our design and illustrates299

the overall block diagram of Spark modules on an “Executor”.300

A Spark cluster often consists of multiple “Executors”. Each301

“Executor” hosts a set of running tasks and manages their storage302

and execution memory pools independently. In addition, there303

are two managers in Spark that are responsible for the memory304

requests sent from the “Executor” module. Specifically, the 305

“Block Manager” manages the storage memory requirements, 306

and the “Task Memory Manager” manages the execution mem- 307

ory requirements. 308

In our memory allocation scheme, we develop two new main 309

modules, called Auto Tuning Algorithm (i.e., ATuMm or Q- 310

ATuMm), and Memory Management Algorithm, and integrate 311

them with the existing Spark modules, as shown in Fig. 4. The 312

“Executor” periodically calls the “Auto Tuning Algorithm” to 313

adjust the storage fraction and set the limit (or the maximum 314

allowed) of execution memory. The ”Memory Management 315

Algorithm” further responds to the memory requirements sent by 316

the “Block Manager” and “Task Memory Manager” modules by 317

considering both free storage/execution memory space and the 318

decision made by the “Auto Tuning Algorithm”. Upon complet- 319

ing each task, the “Auto Tuning Algorithm” receives the runtime 320

logs of the completed task and the previously completed tasks 321

from the “Executor” module. Based on these logs, the algorithm 322

adjusts (1) the boundary between the storage and execution 323

memory pools and (2) the maximum allowed memory space to 324

the execution pool. The adjustment decisions are then passed to 325

the “Executor” for the next task execution. The above adjusting 326

process repeatedly occurs until the last task at the “Executor” 327

completes. Meanwhile, the “Memory Requirement Algorithm” 328

bases on the memory requirements from the “Executor” to allo- 329

cate the memory space for the RDD cache (i.e., storage memory) 330

and task execution (i.e., execution memory). The storage fraction 331

is then accordingly updated by this algorithm based on runtime 332

memory demands. 333

A. Memory Requirement Algorithm 334

The Memory Management Algorithm is designed to allocate 335

memory space for RDD caching and task execution. In partic- 336

ular, this algorithm receives the online memory requirements 337

from the “Block Manager” and the “Task Memory Manager” 338

modules. Specifically, our scheme maintains two parameters: 339

“StorageFraction” and “heapStorageMemory”. While the for- 340

mer decides the maximum available memory of the storage 341

memory pool, the latter limits the maximum available mem- 342

ory of the execution memory pool. According to the current 343

storage partition and “heapStorageMemor”, this algorithm al- 344

locates available memory to the two manager modules (i.e., 345

“Block Manager” and “Task Memory Manager”) to meet their 346

requirements. 347

Algorithm 1 describes the main procedures of this memory 348

management mechanism. 349
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Algorithm 1: Memory Requirement Algorithm.

Fig. 5. Execution requirement conditions.

– Procedure requireExecutionMemory() takes “reqExe” as the350

input, which is the execution memory size required by “Task351

Memory Manager”, and returns the actual allocated execution352

memory. Specifically, execution memory requirements can be353

one of the three scenarios shown in Fig. 5. In the figure, we plot354

the Spark memory pool on an “Executor”, where a solid line355

represents the potential boundary between execution memory356

and storage memory. A dashed line represents the value of357

“heapStorageMemory”, indicating the least reserved space for358

storage memory. Besides, we also mark the used execution359

and storage memory space. In the first scenario, the required360

execution memory is less than the free execution memory, see361

Fig. 5(a). Then, the procedure allocates all needed memory to362

“Task Memory Manager”.363

The second scenario is shown in Fig. 5(b), where the re-364

quired execution memory exceeds the free execution memory365

but not beyond the limit of “heapStorageMemory”. Procedure366

requireExecutionMemory() still allocates all needed memory to367

“Task Memory Manager” and meanwhile expands the execution368

memory pool by moving down the boundary bar (see the solid369

Fig. 6. Storage requirement conditions.

line in the bottom plot of Fig. 5(b)). Finally, suppose the required 370

execution memory exceeds the boundary of “heapStorageMem- 371

ory”. In that case, the procedure only allocates the memory up 372

to “heapStorageMemory” (see the dashed line in the bottom 373

plot of Fig. 5(c)) and also moves down the boundary bar to 374

“heapStorageMemory”. Our algorithm prevents memory over- 375

allocation for task execution by limiting the memory that can be 376

allocated to execution memory. For example, in both scenarios 377

(b) and (c), the execution memory pool occupies part of storage 378

memory after allocating memory to the execution memory pool. 379

However, in scenario (c), we use “heapStroageMemory” to avoid 380

the execution memory pool invading the storage memory pool. 381

In this way, GC time can be reduced as discussed in Section II. 382

– Procedure requireStorageMemory() receives the required 383

storage memory size (“reqSto”) from the “Block Manager” mod- 384

ule for allocating actual memory to cache RRDs. Similarly, we 385

have three possible conditions of storage memory requirements, 386

depicted in Fig. 6. If the required storage memory is less than 387

free storage memory as shown in Fig. 6(a) and (b), then all 388

required memory will be allocated to “Block Manager” (no 389

matter beyond “heapStorageMemory” or not). In contrast, if the 390

required storage memory is more than the free storage memory 391

(see Fig. 6(c)), then only the memory space up to the boundary 392

bar will be allocated to “Block Manager,” and meanwhile, RDD 393

eviction will be triggered to release some memory for caching 394

new RDDs. In both scenarios 2 and 3, we further update the 395

variable “heapStorageMemory” to be equal to the actual storage 396

memory pool size. 397

It is noticeable that “Memory Management Algorithm” does 398

change the storage fraction under some scenarios, such as the 399

ones shown in Fig. 5(b) and (c). Thus, the storage fraction is 400

jointly determined by both “Memory Management Algorithm” 401

and “Auto Tuning Algorithm”. 402

B. Auto Tuning Algorithm 403

Here, we first present the basic version of our auto-tuning 404

algorithm, named ATuMm, which uses a feedback-control way 405

to dynamically adjust the boundary of two memory pools with 406
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Algorithm 2: ATuMm.

a fixed adjustment step. Then, we propose a Q-learning-based407

algorithm, named Q-ATuMm, which uses an intelligent agent408

to optimize the learning speed by automatically tuning the409

adjustment step.410

1) Basic Version. ATuMm: When a task on the “Executor”411

completes, the “Auto Tuning Algorithm” takes the GC time, the412

execution time of the completed task, and the current storage413

fraction as inputs and then compares the performance of the414

completed task (in terms of the ratio of GC time to execution415

time) with that of the previous tasks to make the adjustment416

decision. In particular, the “Auto Tuning Algorithm” returns two417

variables: (1) a new storage fraction (“curStorageFraction”) for418

the potential memory partition, and (2) a new “heapStorage-419

Memory” variable to indicate the least memory reserved for420

storage memory. Using these two variables, ATuMm can adjust421

the memory partition with a limit on the maximum memory that422

can be allocated to execution memory. Algorithm 2 shows the423

pseudo-code of the “Auto Tuning Algorithm”.424

Both setUp() and setDown() repartition the accessible mem-425

ory to the storage and execution pools based on the decision426

made by barChange(). We also remark that the variable “heap-427

StorageMemory” is new in our design, which plays a critical428

role in avoiding long GC time resulting from over-allocated429

execution memory. Later, we present how this variable is used430

in the “Memory Requirement Algorithm” to control the actual431

memory space for RRD caching and task execution.432

– Procedure barChange() receives GC time and execution433

time of the current task from the “Executor” module. We con-434

sider the ratio of GC time to execution time as a measurement of435

Spark performance. A low ratio indicates a “good performance”, 436

vise verse. Then, barChange() makes an adjustment decision 437

from one of three possible actions (i.e., keep still, increase 438

storage fraction, and decrease storage fraction). In particular, we 439

use two variables, “preRatio” and “preUpOrDown” to record the 440

ratio of GC time to the execution time of previous tasks and the 441

last adjustment decision, respectively. We compare “curRatio” 442

with “preRatio” to calculate the reward of the last adjustment. If 443

the current task yields a better performance (i.e., “curRatio” is 444

lower than “preRatio”), the boundary-moving decision that we 445

previously made (i.e., “preUpOrDown”) gets a reward. Thus, we 446

decide to keep moving the boundary further in the same direction 447

as the last task. Otherwise, we move the boundary in a direction 448

that is opposite to that of the last adjustment. Besides these two 449

actions, if the Spark performance converges (i.e., the current 450

ratio is equal to the previous ratio), the boundary keeps still. 451

After taking the new action, the storage fraction changes, and 452

two variables (i.e., “preRatio” “preUpOrDown”) are updated for 453

the next decision. 454

– Procedures setUp() and setDown() control how to expand 455

or shrink the storage and execution memory pools base on the 456

decision made in barChange(). As mentioned in Section II, 457

Spark memory is divided into two pools, i.e., storage memory 458

and execution memory. We thus consider there exists a parti- 459

tion “bar” between storage and execution memory in Spark. 460

Setting the bar up means enlarging the storage memory pool 461

and shrinking the execution memory pool, while setting the bar 462

down means decreasing the storage memory pool and expanding 463

the execution memory pool. In ATuMm, users can configure the 464

percentage of accessible memory (indicated as “step”) that will 465

be increased or decreased in each adjustment. 466

It is challenging to move the partition bar if both storage 467

and execution memory pools are fully utilized. A mechanism 468

is required to determine which objects should be evicted. LRU 469

(Least Recently Used), an existing RDD caching algorithm, is 470

applied by the Spark block manager for storage memory. We 471

adopt this caching algorithm to manage the RDD evictions from 472

storage memory. For execution memory, barChange() is called 473

only when a task has finished its computation and released all 474

its occupied memory resources. Thus, there is no need to evict 475

objects from the execution memory pool. This is also one reason 476

we choose to adjust the memory boundary after each task’s 477

completion. 478

Procedure setUp() takes “preStorageFraction” and the pre- 479

defined parameter “step” (e.g., 5%) as inputs to determine a 480

new storage fraction (“curStorageFraction”) to repartition the 481

memory and a bound (“heapStorageMemory”) to reserve the 482

least storage memory space. In detail, setUp() increases the 483

storage fraction by “step” (see lines 12 and 13 in Algorithm 2) 484

if the new storage memory pool size is less than the overall 485

available memory space. Meanwhile, setUp() updates “heap- 486

StorageMemory” only if 80% of the storage memory is used 487

(see lines 14, and 15 in Algorithm 2). The difference between 488

the storage memory pool size and “heapStorageMemory” will 489

be the potential memory space allocated to execution memory. 490

Procedure setDown() has the same inputs and outputs 491

as setUp() to shrink the storage memory pool. In details, 492
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Fig. 7. Reinforcement Learning (Q-Learning) Algorithm in Q-ATuMm. We
define 1) agent represents the memory manager, 2) environment is Spark runtime,
3) state represents “StorageFraction” and “heapStorageMemory” that limit the
allocation of storage and execution memory, 4) action is changing state, and 5)
reward is calculated from latency and GC time.

setDown() decreases the storage fraction by “step” (see line 20 in493

Algorithm 2). However, it needs to consider RDD evictions to494

release the reduced storage memory additionally (see lines 21495

and 22 in Algorithm 2). For example, if the current storage496

memory pool is 5 GB with 4.5 GB used, and the potential497

storage memory becomes 4 GB, then the memory space (‘mem-498

oryEvict”) that needs to be released is 0.5 GB. setDown() then499

needs to trigger the caching algorithm to evict cached RDDs500

to shrink the storage memory pool. Finally, setDown() updates501

(or decreases) “heapStorageMemory”by “step” of accessible502

memory. If “heapStorageMemory” is more than the new storage503

memory, then setDown() sets ‘heapStorageMemory” to be equal504

to the new storage memory (see line 25 in Algorithm 2).505

2) Q-Learning Based Version: Q-ATuMm: As discussed in506

Section II-D, ATuMm suffers from the inflexibility of the adjust-507

ment step. In order to optimize the adjustment speed, we further508

refine our auto tuning algorithm by using reinforcement learning509

techniques to automatically set the adjustment step for changing510

the memory boundaries. On the other hand, Spark applications511

process data in batches, possessing consistent memory and com-512

putation characteristics, which can be learned by reinforcement513

learning efficiently. Q-learning is a specific algorithm within the514

broader field of reinforcement learning, which receives feedback515

from the objective and makes decisions to optimize the rewards.516

As shown in Fig. 7, an agent interacts with an environment by517

taking actions, then the environment returns a reward of the518

action to the agent and updates the state of the environment. By519

exploiting different actions across all possible states, the agent520

can produce an optimal policy to manipulate the states of the521

environment.522

Q-learning maintains a Q-table, where the columns and rows523

represent states and actions. The values (i.e., value function) in524

the Q-table represent the expectation of benefits of applying an525

action, given a state. The agent updates the value function based526

on an equation (particularly Bellman equation [13]). Specifi-527

cally, Q-learning maintains an exploration-exploitation balance,528

ensuring that the agent explores new actions and state-action529

pairs while exploiting learned information to make optimal530

decisions. Theoretically, an epsilon-greedy exploration strategy,531

as used in the Bellman equation, guarantees that all state-action532

pairs are visited infinitely often, which is crucial for conver-533

gence. Another important factor in Q-learning is the convergence534

rate. The convergence rate of Q-learning depends on factors535

Algorithm 3: Q-ATuMm

such as the learning rate schedule and the characteristics of the 536

environment. In practice, while Q-learning converges asymptoti- 537

cally, convergence speed can vary, and certain modifications, like 538

learning rate annealing, can influence the convergence rate. We 539

evaluate the impact of learning rate and other hyper-parameters 540

in Section IV-C4. 541

In Q-ATuMm, when the “Executor” finishes a task, the agent 542

(i.e., memory manager) calculates the reward of the last action 543

based on the execution time and GC time of the current task. 544

Then Q-ATuMm updates the policy and makes a decision about 545

which is the next state. Specifically, InitializeAgent() initializes 546

all parameters before running applications. QLearningAgent() 547

uses the garbage collection time and execution time of the 548

completed task to calculate the reward of the current action and 549

calls UpdateQTable() to update values of the current state and 550

action in Q-table. QLearningAgent() then decides the action to 551

execute the following task by either exploring a new action or 552

exploiting a known action. We note that Q-ATuMm creates a 553

two-dimension discrete action space, where each element in 554

the action space represents a pair of “StorageFraction” and 555

“heapStorage-Memory”, as introduced in Section III-A. We 556

define “StorageFraction” and “heapStorage-Memory” as ratios 557

of the overall heap size, ranging from 1% to 99%. The status 558

space is the same as the action space. Algorithm 3 describes the 559

details of Q-ATuMm. Q-ATuMm trains the model on-the-fly. 560

– Procedure initializeAgent() initializes the state space, the 561

action space and the Q-table. We denote α as the learning rate, 562

representing the length of the step to update the value function. 563

ε is the exploration ratio, which indicates how much the agent 564

prefers to explore unknown actions. We denote γ as a discount 565

factor reflecting how much the future rewards contribute to the 566

current update. 567

– Procedure QLearningAgent() receives the garbage collec- 568

tion and execution time of the task, with the state of current 569

“stateIndex” and “stateAction”, which locate the value function 570

in the Q-table to update. Because our goal is to minimize garbage 571
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TABLE II
TESTBED CONFIGURATION

collection and reduce the overall latency, QLearningAgent() de-572

fines the reward as the ratio of the execution time (GC time plus573

others) to the GC time plus a constant number (i.e., δ = 0.01)574

to avoid zero denominators (see line 8 in Algorithm 3). Update-575

QTable() is then called to update the value function in the Q-576

table. QLearningAgent() uses a parameter ε to decide to explore577

a random action or to exploit the action with the largest benefit578

(see lines 11-14 in Algorithm 3). A larger ε means the agent579

prefers to explore unknown actions. Finally, QLearningAgent()580

returns the action to the “Executor” to execute the following581

tasks.582

– Procedure updateQTable() takes the reward as an input583

to calculate the new value in Q-table based on the Bellman584

equation [13]. First, UpdateQTable() locates the value in Q-table585

and then computes the “stateValue” to estimate the reward of the586

next state. It is worth pointing out that the parameter γ is used to587

decide how important future decisions are. A larger γ indicates588

the agent relies more on the future reward than the current one.589

Finally, UpdateQTable() updates the “Q value” with the current590

reward and the estimated future reward. The parameter α is used591

as the learning rate to control how fast the agent learns from592

the rewards. There is a trade-off between learning speed and593

accuracy. A larger learning rate can allow the agent to learn and594

move faster to the optimal solution, but meanwhile, has a higher595

possibility of causing the agent to be trapped in a locally optimal596

point.597

IV. EVALUATION598

In this section, we discuss the implementation and the evalua-599

tion of ATuMm and Q-ATuMm in a real Spark cluster. We aim to600

investigate the performance in terms of latency, memory usage,601

and garbage collection at run-time. We use default UMM and602

SMM mode as our baseline, which is discussed in Section II.603

A. Testbed604

We conduct our experiments in a Spark cluster with one driver605

and four workers that are homogeneous to each other. The cluster606

is deployed on the Dell PowerEdge T310 and hypervised by607

VMware Workstation 12.5.0. Each node in the Spark cluster is608

assigned 1 CPU, 1 GB memory, and 50 GB disk space. Table II609

summarizes the details of our testbed configuration.610

We implement ATuMm and Q-ATuMm as new portable mem-611

ory manager modules, besides SMM and UMM, in Apache612

Spark 2.4.0, which contain functions interacting with other 613

Spark modules. It is noticeable that our new memory man- 614

ager can also be integrated into Spark from the version of 615

1.6.0 to 2.4.0. The source code is available on GitHub.1 The 616

LOC is 2,428 in total. Specifically, we develop functions ac- 617

quireStorageMemory() and acquireExecutionMemory() to allo- 618

cate storage and execution memory to “Block Manager” and 619

“Task Memory Manager”, respectively. We also integrate a 620

profile collector in the “Executor” module to collect task logs. 621

Specifically, ATuMm applies function barChange() to receive 622

these task logs and calls functions increaseStorageFraction() or 623

decreaseStorageFraction() to adjust memory partition. Mean- 624

while, Q-ATuMm uses function updateQTable() to maintain 625

the Q-Table for the agent to perform reinforcement learning. 626

Furthermore, we integrate a memory usage analyzer in ATuMm 627

and Q-ATuMm to collect the run-time memory usage informa- 628

tion. Users can replace the existing Spark memory manager to 629

ATuMm or Q-ATuMm by simply setting a configurable param- 630

eter before submitting a Spark application. 631

B. ATuMm Evaluation 632

We set the accessible memory and the initial storage fraction 633

of ATuMm as the same as those of UMM (i.e., accessible 634

memory is 60% of JVM heap, and storage memory is initial- 635

ized as 50% of accessible memory). The step to increase or 636

decrease storage fraction in each adjustment is configured as 637

5% of accessible memory by default. Furthermore, the win- 638

dow size representing the number of previous tasks is set as 639

20% of activated tasks by default. Users can pre-configure 640

these parameters in ATuMm before launching any Spark 641

applications. 642

1) Latency Analysis: We evaluate and compare the perfor- 643

mance of Spark applications under three memory managers 644

(SMM, UMM, and ATuMm) by conducting experiments with 645

different applications. We choose PageRank and K-means as 646

benchmarks because these two applications are two ubiquitous 647

techniques, which are widely applied in machine learning and 648

data mining applications [6], [14]. Considering the duration of 649

experiments, we report results for a workload of 1 GB input data 650

for applications. 651

Fig. 8(a) and (b) illustrate the latency of PageRank and K- 652

means under different memory managers. We set various storage 653

fraction under SMM manually, and compare the latency of SMM 654

with that of UMM and ATuMm. In Fig. 8(a), we observe that the 655

performance of UMM beats SMM with some storage fractions 656

(e.g., 40% to 60%). However, when SMM sets the storage 657

fraction to 80%, it reaches the best performance, which achieves 658

27% shorter latency compared to UMM. More importantly, the 659

latency of our ATuMm is close to the lowest among all, and our 660

ATuMm beats UMM as well. Moreover, as shown in Fig. 8(b), 661

our ATuMm can achieve the best performance (i.e., the lowest 662

latency), compared with both UMM and SMM. We conclude that 663

ATuMm outperforms the other two existing memory managers 664

with the same computation resources allocated. 665

1https://github.com/DanlinJia/spark _ core_ATMM
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Fig. 8. Execution time of applications under SMM, UMM and ATuMm.

Fig. 9. Memory usage analysis of SMM, UMM and ATuMm.

2) Sensitivity Analysis: We also conduct a set of experiments666

to investigate the sensitivity of input data size, where we compare667

the performance of PageRank under three memory managers in668

the default mode with different input data sizes, such as 1 GB,669

2 GB, 3 GB and 7 GB. As shown in Fig. 8(c), ATuMm achieves670

the best performance when the input data sizes are 1 GB, 2 GB,671

and 3 GB. Compared to UMM, ATuMm improves the latency by672

25%. We interpret this improvement by observing that ATuMm673

leverages the GC time to repeatedly adjust the boundary between674

storage and execution memory, which prevents the Spark appli-675

cations from a long GC duration as UMM introduced. When in-676

put data grows up to 7 GB, the overwhelming workload takes full677

usage of execution memory to process input data. Both UMM678

and ATuMm expand the execution memory pool aggressively to679

satisfy the massive execution memory requirements. As a result,680

UMM and ATuMm obtain similar performance (e.g., 78 minutes681

for 7 GB input data), which is better than that of SMM.682

3) Memory Usage and Garbage Collection Analysis: We683

further look closely at the execution details of three Spark684

memory managers by plotting their memory usages in Fig. 9,685

where PageRank is running with 3 GB input data. Fig. 9(a)∼(c)686

present the storage memory usage across time under the three687

memory managers, while Fig. 9(d)∼(f) depict the correspond-688

ing execution memory usage. In each plot, the dashed line is689

the maximum memory size accessible for the corresponding690

memory (such as storage or execution), and the solid line is 691

the actual usage of the memory pool. 692

From Fig. 9(a)∼(c), we observe that the storage memory 693

utilization is similar for all three memory managers, which 694

increases up to the maximum allowed storage pool size as 695

time goes by. This is because RDDs are cached periodically in 696

PageRank. Whereas, the storage memory pool sizes are different 697

under three memory managers at different times. That is, both 698

UMM and ATuMm dynamically change the storage memory 699

pool sizes instead of the fixed one as SMM does. As shown in 700

Fig. 9(a), the static storage memory pool starts to evict RDDs 701

when the utilization of the storage memory pool is full. However, 702

in Fig. 9(b), UMM drops the size of its storage memory pool to 703

almost zero and then increase its storage pool when RDDs are 704

cached. The storage memory pool changes more dynamically 705

under ATuMm, as shown in Fig. 9(c). ATuMm first drops the 706

storage fraction gradually as the execution memory pool ex- 707

pands, and then increases it as RDDs are cached. It is noticeable 708

that ATuMm not only increases the storage memory pool based 709

on storage memory requirements to cache RDDs, but also adjusts 710

the pool size more rapidly than UMM to limit the execution 711

memory pool size. 712

We further show our analysis of the execution memory usage 713

under three memory managers in Fig. 9(d)∼(f). SMM fixes the 714

execution memory pool size regardless of workload diversity, 715



IEEE Proo
f

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, 2023

Fig. 10. GC analysis of SMM, UMM and ATuMm.

while UMM and ATuMm alter the execution memory pool size716

based on demands. Fig. 9(e) shows that the execution mem-717

ory pool of UMM expands aggressively and occupies almost718

all accessible memory when the first execution requirement719

comes. Contrarily, in Fig. 9(f), ATuMm increases gradually720

across time until it satisfies all execution requirements. This721

is because UMM expands the execution memory pool only722

based on execution memory requirements, while ATuMm fur-723

ther considers the impact of GC on Spark performance to con-724

trol the expansion of the execution memory pool. In addition,725

as the execution memory usage drops, UMM still gives the726

execution memory pool as much memory space as possible727

(i.e., all memory except that for caching RDDs). Conversely,728

ATuMm decreases the execution memory pool size more rapidly729

to limit the memory allocated to the execution memory pool. By730

this way, ATuMm can effectively prevent Spark applications731

from long GC durations introduced by overloaded execution732

memory. We can observe that the execution memory pool size733

converges to around 200 MB, which guarantees enough mem-734

ory for task execution and further offers a relatively low GC735

time.736

We next present our observation regarding GC time. To show737

our observations, we use the PageRank application with 3 GB738

input data as representative and compare GC time using three739

memory managers. Fig. 10 shows the duration of garbage col-740

lection during the runtime of the application, where each spike741

represents an occurrence of a full GC (i.e., JVM stops all tasks742

and scans the whole heap to remove unreferred objects) that743

majorly contributes to GC time [15]. Fig. 10(a) shows that the744

maximum full GC time of SMM is around 40 seconds. While,745

under UMM, a full GC can take more than 70 seconds, see746

Fig. 10(b). More importantly, we can observe that the full GCs747

under ATuMm are all below 30 seconds in Fig. 10(c), which748

is smaller than both SMM and UMM. Besides, We observe749

that fewer spikes occurred under ATuMm than under UMM750

and SMM, which means that the frequency of full GCs under751

ATuMm is also lower than SMM and UMM. We also record the752

total GC time of SMM, UMM, and ATuMm, which is 14˜min,753

20˜min and 8.4˜min, respectively. Since we use 4 executors in754

the experiment, the GC time of each executor should be divided755

by 4, which is considered as the contribution of GC to the overall756

execution time. Thus, we can conclude that ATuMm is able to757

significantly reduce the maximum and the total time of GCs758

when compared to SMM and UMM and thus accelerates the759

execution of Spark applications with minimum makespan (i.e.,760

total execution length).761

Fig. 11. Latency of PageRank under SMM, UMM, ATuMm, and Q-ATuMm.

C. Q-ATuMm Evaluation 762

We further implement and evaluate our Q-learning based 763

version Q-ATuMm. We construct experiments on different 764

categories of workloads (i.e., data-intensive applications and 765

business queries) to evaluate the performance of Q-ATuMm, 766

compared with that of SMM, UMM, and ATuMm. We tune 767

the three hyper-parameters (i.e., learning rate, exploration 768

ratio, and discount factor as shown in Section III-B2) in 769

Q-ATuMm to achieve the best performance. The discus- 770

sion on these hyper-parameters will be shown later in this 771

section. 772

1) PageRank Analysis: We first construct the same experi- 773

ments with PageRank on Q-ATuMm as shown in Section IV-B1. 774

In order to trigger intensive data loading and processing, we 775

increase the input data size to 5 GB. We observed that the 776

application has fewer iterations to execute when the input size is 777

small. Therefore, the Q-learning algorithm has fewer samples to 778

learn. The performance of Q-ATuMm is worse with small data 779

size. We also fix the number of iterations in PageRank as 20 in 780

all experiments. 781

Fig. 11 illustrates the latency of PageRank under the four 782

different memory managers. We manually set SMM storage 783

fractions from 0.1 to 0.9 to observe the optimal latency experi- 784

mentally. We observe that the best performance under SMM is 785

achieved when the storage fraction is 50% and 90%, while UMM 786

cannot reach that, which is consistent with our observations 787

in Section IV-B1. On the other hand, we observe that both 788

ATuMm and Q-ATuMm outperform UMM. More importantly, 789

Q-ATuMm further reduces the latency by 28% compared to 790

ATuMm. 791
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TABLE III
QUERY CLASSIFICATION

Fig. 12. Latency of TPC-H queries. Queries within the blue dashed box are
CPU intensive. Queries within the red solid box are I/O intensive.

2) Workload Intensity Analysis: Q-ATuMm is further eval-792

uated on a decision support benchmark named TPC-H [16] in793

the context of Apache Spark. TPC-H consists of twenty-two794

business-oriented queries and concurrent data modifications.795

TPC-H evaluates the performance of decision support systems796

by executing ad-hoc queries on a generated synthetic data set.797

In our experiment, we select representative queries running on a798

10 GB data set. Work [17] investigates characteristics of TPC-H799

queries and classifies them based on resource intensity. We select800

two types of queries in TPC-H to evaluate Q-ATuMm, as shown801

in Table III. CPU Intensive quires contain operations like order802

and select, while I/O intensive quires either need to load large803

data set into memory or perform operations on multiple data804

sets, e.g., join. It is worth noticing that some quires can be both805

CPU and I/O intensive (e.g., Q1, Q3, and Q21).806

We compare the performance of selected queries under Q-807

ATuMm with that under ATuMm and UMM. The first six queries808

in Fig. 12 illustrates the latency of CPU intensive queries with809

different memory manages. We observe that the latency of Q1,810

Q6, Q12, and Q13 does not have a visible variance among811

three memory managers, while Q-ATuMm outperforms the other812

two in Q3 and Q21. Our experimental results indicate that813

CPU-intensive queries hardly benefit from both ATuMm and Q-814

ATuMm, as their performance heavily relies on CPU resources.815

The last five queries in Fig. 12 are I/O intensive queries that need816

to load data into memory and trigger more RDD caching, which817

can significantly benefit from our new design. Thus, we observe818

a decent latency reduction above 20% in Q-ATuMm, compared819

with that in UMM. For Q1, we find that although Q1 needs to820

join two tables, each table is small. Therefore, even though Q1821

is also classified as an I/O extensive query, its execution time is822

not reduced significantly by Q-ATuMm.823

3) Memory Usage and Garbage Collection Analysis: To824

closely analyze the performance improvement under Q-825

ATuMm, we further collect the aggregated GC time of all826

executors under ATuMm, Q-ATuMm, UMM, and SMM with827

0.9 storage fraction and show both total execution time (i.e.,828

latency) and GC time for PageRank in Table IV. We first notice829

that GC time plays a dominant role in the total execution time.830

TABLE IV
EXECUTION TIME AND GC TIME COMPARISON

Fig. 13. Storage memory usage among all four memory managers.

By gradually reducing the storage fraction when the execution 831

memory pool expands, our memory managers (i.e., ATuMm and 832

Q-ATuMm) can significantly reduce the GC time by 17% and 833

32%, compared to UMM. Q-ATuMm further reduces the GC 834

time (close to the optimal one as shown in the row of SMM 0.9 in 835

Table IV) by using the Q-learning reinforcement technique to 836

set the adjustment step for changing the memory boundaries 837

automatically. 838

We further show storage memory usage among all four mem- 839

ory managers in Fig. 13. First, SMM has a fixed storage pool 840

size (e.g., 0.9 storage fraction), and its storage memory usage 841

increases up to the maximum allowed storage pool size as time 842

goes by, which is caused by caching RDDs in each iteration. On 843

the other hand, UMM, ATuMm, and Q-ATuMm dynamically 844

change the storage memory pool size as time progresses based 845

on the run-time memory resource demands. For example, as 846

shown in Fig. 13, all of them start to increase the storage pool 847

size at around 1000 seconds when RDDs start being cached. 848

However, we can observe that UMM immediately decreases 849

the storage memory pool size to around zero to give more space 850

to the execution memory pool, which unfortunately can cause 851

a long GC time, as we discussed in Section II-C. To address 852

this issue, ATuMm decreases the storage memory pool size 853

gradually until it converges with the storage memory used size. 854

It is visible that ATuMm gradually adjusts storage memory 855

size based on the caching of RDDs, but it is less aggressive 856

than UMM. For Q-ATuMm, we observe that the randomness 857

that comes from exploration causes the spikes as the storage 858
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Fig. 14. Execution memory usage among all four memory managers.

memory pool size is dynamically adjusted. We also notice that859

the memory storage pool size decreases to below 50 almost860

from the starting point and stays there for about 900 seconds861

before the demand for storage memory increases because of862

RDD caching. In conclusion, we see that Q-ATuMm converges863

faster than ATuMm but less aggressive than UMM.864

We also show execution memory usage among all four mem-865

ory managers in Fig. 14. SMM’s execution memory pool size866

remains fixed even though the actual execution memory usage867

is always lower than the allocated one, which indicates that868

SMM cannot fully utilize the execution memory, and meanwhile,869

it avoids triggering larger GC time. Based on the workload870

demands, UMM, ATuMm, and Q-ATuMm dynamically alter871

the execution memory pool size, which again proves to be more872

beneficial for execution memory utilization. ATuMm gradually873

increases execution storage as time passes, which helps reduce874

the long GC time. Q-ATuMm’s execution memory pool size, on875

the other hand, is adjusted considerably to execution memory876

usage and converges at around 150 seconds, which is faster than877

ATuMm. The observation shows that our design of Q-ATuMm878

can converge fast to the run-time execution memory demands,879

but not as aggressive as that in UMM, which shortens GC time880

and saves execution time.881

4) Hyper-Parameter Tuning: We finally discuss the impacts882

of three hyper-parameters, i.e., learning rate (α), exploration883

ratio (ε), and discount factor (γ), on Q-ATuMm’s performance.884

We conduct a set of sensitivity analysis tests by setting different885

values of these hyper-parameters to run PageRank applications.886

Instead of extensively exploring all possible combinations, we887

selectively fix any two hyper-parameters and change the third888

one. Table V summarizes the top 5 combinations that obtain the889

best latency.890

We find that three out of five appropriate values for the learn-891

ing rateα are 0.3. Although a higher learning rate may guarantee892

Q-ATuMm converges quickly, it is possible to be trapped in893

TABLE V
LATENCY OF TOP 5 HYPER-PARAMETER COMBINATIONS

a locally optimal solution. A small learning rate ensures that 894

Q-ATuMm can achieve the optimal global solution, even with a 895

slower speed. We also set the exploration ratio ε to 0.1 because 896

a lower exploration ratio can allow more exploitation than ex- 897

ploring different states and identify the best values for achieving 898

the optimal performance. As Q-ATuMm has a relatively simple 899

state space, we expect Q-ATuMm to learn on the known states 900

instead of exploring around randomly. Finally, considering that 901

the discount factor determines the importance of future rewards, 902

and PageRank is an iterative application with periodic patterns 903

across time, we find that a significant discount factor (i.e., 0.9) 904

can speed up the convergency. 905

We also tune the three hyper-parameters of Q-ATuMm to 906

investigate their impacts on the performance of TPC-H appli- 907

cations. Similarly, we extensively change the values from 0.1 to 908

0.9 for each hyper-parameter and receive the following obser- 909

vations. First, we find that the discount factor is not sensitive for 910

both CPU intensive and I/O intensive queries because most of the 911

queries are completed within a short period before the discount 912

factor takes effect. Second, the exploration ratio is less sensitive 913

for CPU-intensive queries than for I/O intensive queries because 914

CPU-intensive queries hardly benefit from Q-ATuMm. Finally, 915

more than one combination of the three hyper-parameters can 916

lead to the same best performance, which indicates that TPC-H 917

quires are not sensitive to hyper-parameters of Q-ATuMm as 918

they are not iterative applications. 919

V. CONCLUSION 920

Apache Spark speeds up large-scale data processing by lever- 921

aging in-memory computation. However, the existing Spark 922

memory manager (UMM) incurs long garbage collections, 923

which degrades Spark performance significantly. In this work, 924

we first present a new Spark memory manager (ATuMm) that 925

leverages the feedback of GC time and memory demands 926

to partition the memory pool dynamically. We further adopt 927

a reinforcement learning algorithm to develop an intelligent 928

agent (Q-ATuMm) to manage memory partition for complicated 929

workloads. We implement ATuMm and Q-ATuMm in Spark 930

2.4.0 and construct experiments in a real Spark cluster. We 931

find that ATuMm obtains around 25% improvement of Spark 932

performance, compared with existing memory managers in the 933

best case. By applying learning-based memory management, 934

Q-ATuMm can further improve Spark’s performance to 34%. We 935

contribute the latency improvement to successfully reducing the 936

GC time for both ATuMm and Q-ATuMm. In the future, we plan 937

to evaluate our design on a larger volume of applications with dif- 938

ferent types of resource intensity. By constructing experiments 939

extensively, we are able to find a hyper-parameter combination 940

that provides optimal performance for general data-processing 941
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applications. We also plan to integrate other ML algorithms, e,g.,942

LSTM, to compare cost and performance with Q-learning.943
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Thermal Aware System-Wide Reliability
Optimization for Automotive Distributed

Computing Applications
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Abstract—As the automotive industry is shifting the paradigm
towards autonomous driving, safety guarantee has become a
paramount consideration. Temperature plays a key role in the
system-wide reliability of the electronic control systems (ECS)
used in the automotive. A vehicle is usually subjected to harsh
temperature conditions from its operating environment. The in-
creasing power density of IC chips in the ECS further exacerbates
the operating temperature and thermal gradient condition on the
chip, thereby significantly impacting the vehicle’s reliability. In
this paper, we study how to map a periodic distributed automotive
application on a heterogeneous multiple-core processing architec-
ture with temperature and system-level reliability issues in check.
We first present a mathematical programming model to bound
the peak operating temperature for the ECS. Then we propose
a more sophisticated approach based on the genetic algorithm to
effectively bound the peak temperature and optimize the system-
wide reliability of the ECS by maximizing its mean-time-to-failure
(MTTF). To this end, we present an algorithm to guarantee the peak
temperature for periodic applications with variable execution times
to ensure our approach’s effectiveness. We also present several
computationally efficient techniques for system-wide MTTF com-
putation, which show several-order-of-magnitude speed-up over
the state-of-the-art method when tested using synthetic cases and
practical benchmarks.

Index Terms—Automotive Reliability, System-Level MTTF,
Thermal Aware, ECU, ISO 26262.

I. INTRODUCTION

THE mainstream innovation in the automotive industry is
driven by electronic systems that have transformed au-

tomobiles from a mechanical-only system to a sophisticated
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network of embedded systems. Utilizing innovative electronics
technologies provide safer integration systems, which reduce
human failure in driving, e.g., from traditional GPS positioning
to inter-vehicle communication, from the traditional CAN bus to
Automotive Ethernet and Media Oriented Serial Transport [1].
Meanwhile, consolidating auto-electronics and enhancing ECS
reliability becomes more important as endorsed by ISO-26262
standard [2] because more and more life-critical control deci-
sions are made electronically on the roads.

Temperature plays a key role in terms of reliability for au-
tomotive systems. Among various failure mechanisms in an
automotive ECS, the temperature-induced fault can reach as
high as 55% [3]. The aggressive scaling of transistor sizes
increases the chip power density and runtime temperature, and
the ever-increasing computing complexity dramatically exag-
gerates the chip thermal gradient, which could harm the ECS
reliability [4]. Moreover, the vehicles undergo stringent en-
vironmental conditions with the high temperature of ECUs
reaching from 90 ◦C to 150 ◦C [5], which accelerates the aging
or wear-out due to thermal-induced failure phenomena such as
Electromigration (EM), Time-Dependent Dielectric Breakdown
(TDDB), Negative Bias Temperature Instability (NBTI), Hot
Carrier Injection (HCI), and Thermal Cycling (TC) [6]. Also,
exceeding the temperature threshold may cause the ECU to enter
the thermal emergency situation and be shut down automatically
during runtime [7], which may cause catastrophic consequences.
Therefore, the runtime temperature should be carefully managed
for reliability concerns to meet the safety requirements for the
automotive, e.g., the international standard ISO 26262.

Designers may use various active and passive cooling meth-
ods to restrict the ECU temperature, such as convection heat
sinks and spreaders in low-end ECUs [8] or passive cooling
for high-end ECUs, e.g., Tesla Model 3 [9]. However, relying
solely on a more powerful mechanical cooling system cannot
solve the thermal crisis in vehicle ECS as they are ineffective in
dealing with the localized thermal hotspots due to non-uniform
power densities on these ICs. In particular, for the emerging 3D
ICs that are a promising alternative for addressing the rapidly
growing computation/storage needs of Artificial Intelligence
applications [10]–[12], the thermal problems become even more
substantial, and the existing active and passive cooling tech-
niques utilized in modern automotives are powerless [13], [14].
Moreover, the design of the mechanical cooling system requires
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thermal characteristics of the ECS under different workloads and
environments to be incorporated in the design process for better
design trade-offs. Hence, thermal-aware resource management
is a critical part of the solution to minimize the temperature
impact for ECS.

In this paper, we study the problem of how to map periodic
distributed automotive applications on a heterogeneous ECU
architecture to mitigate thermal-induced system-level reliability
degradations. In particular, we aim at electromigration-aware
MTTF maximization and latency minimization without vio-
lating the temperature threshold on distributed heterogeneous
ECUs. Our proposed optimization framework can also be readily
utilized to improve other failure types. Overall, we have made
the following contributions:

1) We develop a simple thermal-aware mathematical
programming-based method to bound the peak temper-
ature when mapping periodic vehicle applications on a
heterogeneous ECS architecture.

2) We find that existing approaches cannot safely bound the
peak temperature when tasks’ actual execution times vary
from their Worst-Case Execution Times (WCETs). To this
end, we propose a computation-efficient thermal bounding
method that can be safely adopted in practical cases with
execution time variance. Further, we formally prove a
series of supportive lemmas and theorems in this work
to ensure its effectiveness.

3) We improve the system-level MTTF computing efficiency.
Our proposed formula can be used for problems with
higher design complexity and more optimization dimen-
sions than [15], [16]. Further, we extend our MTTF calcu-
lation approach to the more general case (when different
ECUs may have different aging rates).

4) We incorporate our thermal bounding method and system-
level MTTF estimation into a genetic algorithm-based
approach to map the periodic vehicle applications on ECS.
Based on both synthesized test cases and real-life bench-
marks, the experimental results show that the proposed
approach can achieve 54× to 110× speed-up over the
state-of-the-art approach [16].

II. RELATED WORK

An automotive ECS carries safety-critical applications, which
demands both stringent real-time responsiveness and high-
reliability requirements. In this paper, we improve the opti-
mization framework that can simultaneously deal with ECS
temperature limitations, real-time constraints, and reliability
requirements.

The thermal safeness ensured in this work is essential for
achieving a sustainable running ECS, which prevents auto-
matically triggered power gating, clock throttling, or shutting
down ECUs when thermal emergency occurs. Some reliability
optimization approaches have been proposed, with no issues of
temperature on computing hardware taken into consideration,
e.g. [17]–[22]. So, they are not always feasible in thermal-
constrained platforms. For example, Huang et al. [23] optimized
the energy, reliability, and makespan jointly on directed acyclic

graphs (DAGs); however, they did not consider the thermal
effects on frequency-dependent transient faults in the reliabil-
ity framework. Other existing approaches employ simplified
power/thermal models, which can either cause thermal threshold
violation during runtime or pessimistically predict the system
performance. For example, Lee et al. [24] utilized constant max-
imum powers for peak temperature identification on consecutive
execution phases, so its predicted peak temperature can overly
constrain its actual resource utilization. Moreover, the solution
in [24] does not optimize the reliability.

To facilitate more rigorous analytical thermal analyses, some
more sophisticated algorithms have been developed to identify
the peak temperature [25], [26]. However, their computational
cost can be prohibitively high when scaling the application
complexity and processing platforms [25]–[27]. To reduce the
peak temperature identification complexity, thermal bounding
approaches [28], [29] were developed to estimate the highest
possible peak temperature for given task sets with different map-
pings. However, as shown later in this paper, these approaches
[28], [29] cannot effectively bound the peak temperature when
the task execution time varies. Other works, e.g. [30], [31], use
the regression-based model and practical set-up, respectively,
to estimate the peak chip temperature. These solutions cannot
guarantee that the actual peak temperature stays below the
estimated results and are also difficult to be incorporated into an
optimization framework. Hence, there is a need to develop more
effective and efficient temperature-constrained methodologies
that can be safely applied on ECS with additional optimization
factors, such as reliability enhancement and makespan mini-
mization.

Many works consider temperature when establishing reliabil-
ity optimization frameworks [32]. Zhou et al. [32] studied the
task scheduling problem on a heterogeneous computing platform
for latency minimization problem under the peak temperature
and reliability constraint. However, their reliability model, i.e.,
the transient fault model, is independent of temperature. They
also ignored the dependency of task executions and assumed that
the temperature can reach stable status instantaneously. Ergun
et al. [33] studied the system reliability maximization problem
on IoT systems without considering the timing constraints; thus,
their solutions become infeasible for the latency-critical automo-
tive applications. These methodologies fall short of effectively
dealing with the thermal challenges and their impacts on system
reliability and fulfill critical ECU requirements in automobile
system design.

To incorporate system reliability optimization into our work,
we adopt the widely used Mean-Time-To-Failure (MTTF) to
determine a system’s lifetime reliability and develop a fault-
tolerant mechanism based on processor/system state [34]. A
recent study extended the validation scope of MTTF from
Electromigration to Thermomigration and stress-migration in-
duced failure [35]. However, one primary concern is that the
computational cost of MTTF calculation can be prohibitively
high [15], [16], [36], [37] to obtain high accuracy.

The rest of the paper is organized as follows. We introduce the
system models and formally define the problem in Section III.
In Section IV, a linear mathematical programming model for
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Fig. 1. The heterogeneous ECS Architecture.

a simple thermal approach is presented. In Section V, a more
accurate peak temperature bounding method is proposed. In
Section VII, our genetic algorithm details, experiment set-up,
and results are described. At last, we conclude in Section VIII.

III. PRELIMINARY

In this section, we first discuss the architecture and system
models used in this paper. Later, we define the system-level
thermal and reliability models.

A. Architecture and Application Models

In this study, we consider integrating multiple ECUs as
an ECS targeting safety-critical applications. Assume an ECS
consists nc heterogeneous ECUs interconnected by a bus net-
work through a central gateway [18], [19], [38] as EC =
{EC1, EC2, . . ., ECnc} in Fig. 1. Each ECU can be interfaced
with various sensors and actuators. As the ECUs have different
ambient temperatures as per their mounting locations in the
vehicle [5], we assume different ambient temperatures for each
ECU,Tamb = {Tamb1 , Tamb2 , . . ., Tambnc

}. This ambient tem-
perature accounts for the cumulative effect of the environment
temperature and the surrounding electronics/mechanical device
heat transfer.

We consider periodic automotive applications as in the exist-
ing works [39]–[41], and use the Directed Acyclic Graph (DAG),
G = {V, E} to model their behavior, which will be mapped on
the heterogeneous architecture described above. We assume that
the node-setV consists of totalnv nodes for sensing/control tasks
in an ECS as V = {V1,V2, . . .,Vnv}. Each task may require
different computation times due to the heterogeneity of the
ECUs. Therefore, we construct a 2-D matrix for worst-case
execution time (WCET) of the task set on different ECUs as,

Wnv×nc = {wik, i = 1, . . ., nv; k = 1, . . ., nc}, (1)

where wik represents the worst-case execution time of the i-th
task (Vi) executed on the k-th ECU (ECk). We assume that the
overhead for administering task executions can be reckoned by
calibrating each task’s execution times, and the WCET of the
tasks are not affected by the thermal profile. The edge set E =
{eij ,withVi,Vj ∈ V} represents the worst-case communication
cost between different task nodes in a system.

B. Power and Thermal Models

The total power consumption of an ECU is a combination of
dynamic power (Pd) and leakage power (Ps) [42]. The dynamic

power does not depend on the transient temperature [43], but
each task in an automotive system has different dynamic power
based on the switching activity [24]. Therefore, to exploit this
phenomenon, we consider the dynamic power of task Vi as,
Pd(i) = αi.V 3

dd. Where αi is the activity factor with αi = 0 for
the idle task, and Vdd is the supply voltage of the ECU.

We assume that the leakage power of an ECU is linearly de-
pendent on the thermal state [43], i.e.,Ps = (φ1.T + φ0), where
T is the temperature of the ECU, φ0, and φ1 are ECU-dependent
constants. Therefore, the all-inclusive total power consumption
(Ptotal) of an ECU while running the task Vi can be expressed
as

Ptotal = Pd(i) + Ps = V 3
dd · αi + (φ1 · T + φ0). (2)

We adopt the widely used RC-thermal model [24], [29], [43]–
[45] to capture the ECU temperature dynamics. T (t) and P (t)
are the transient temperature (°C) and its corresponding power
consumption (Watt) at time instant t, respectively. Then, the
transient temperature T (t) follows

Rth · Cth · dT (t)
dt

+ T (t)−Rth · Ptotal(t) = Tambk , (3)

where Rth, Cth represent thermal-resistance ( ◦C/W ) and
thermal-capacitance (J/ ◦C). Given the equation (3), for task
Vi, we can easily identify its ending temperature T (t2) of the
interval [t1, t2] with T (t1) being the initial temperature as

T (t2)=
A(i)

B
+

(
T (t1)− Tambk−

A(i)

B

)
e−B(t2−t1)+Tambk ,

(4)
where A(i) = (φ0 + V 3

dd · αi)/Cth and B = 1/(Rth · Cth)−
φ1/Cth. If the ECU executes the periodic task profile, then
the stable status temperature of the ECU can be given by the
following theorem (Similar proof is described in Quan et al. [43]
and hence omitted.)

Theorem 1: Let an ECU, i.e., ECk runs a periodic schedule
with the period of tp, starting from the ambient temperature
(Tambk ). Let TL be the ending temperature of the first period
and let Tss be the temperature when it reaches a stable status.
Then,

Tss = Tambk +
TL − Tambk

1 − K
, (5)

where K = exp(−B · tp).

C. Lifetime Reliability Model

In this paper, we focus on temperature sensitive Electro-
migration (EM) wear-out failure mechanism and estimate the
system-level reliability of the ECUs as a Mean Time to Failure
(MTTF). At the higher temperature and current density, the Elec-
tromigration causes displacement of the mass in the conductors
of inadequate cross-section, thereby leading to the vacancies
in the chip geometry, which can not be recovered. This can be
correlated with the mean time to failure as [46],

MTTF (T ) ∝ Ac · J−n · e
Ea
K·T , (6)

where Ac is a cross-section area of the conductor related con-
stant; J is the current density in Amp/cm2; Ea is the activation
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energy in electron-volts; K is the Boltzmann’s constant; T is the
Kelvin temperature, and n = 2 unless otherwise specified. From
equation (6), the lifetime reliability of the device is inversely
dependent on the peak temperature, and it would be improved
if the peak temperature is reduced.

D. Problem Formulation

For the given automotive DAG application setG = {V, E}, we
seek mapping strategies on the heterogeneous architecture EC
such that the latency is reduced (by satisfying the deadline) and
system-level lifetime reliability is maximized (by optimizing the
operating temperatures for ECUs judiciously). Simultaneously,
we intend to bound the peak temperature to avoid the thermal
emergency situation as stated before.

Problem 1: GivenEC and DAGG = {V, E}, allocate all task
nodes inG toEC such that (1) the peak temperature of the design
(Tpeak) is lower than the given temperature threshold (Tmax);
(2) the makespan (Cmax), peak temperature, and system-level
lifetime reliability (MTTF ) of the design are optimized.

IV. MATHEMATICAL PROGRAMMING APPROACH

Clearly, Problem 1 in Section III-D is NP-hard, and dif-
ferent approaches can be applied to solve it, such as mathe-
matical programming [47], simulated annealing [16], genetic
algorithm [48], etc. In what follows, we first deal with Problem
1 using the mathematical program approach, as it is a common
approach that can produce the optimal solution for an optimiza-
tion problem.

To satisfy the peak temperature constraint of the EC after
partitioning task set V , we define the decision variables xik as,

xik =

{
1, if Vi is assigned to ECk;
0, otherwise.

(7)

Each task Vi must be allocated to only one processor as con-
strained by,

nc∑

k=1

xik = 1, ∀Vi ∈ V, ∀ECk ∈ EC. (8)

Let us define another decision variable σi as the starting time of
task Vi, then the makespan of the system is defined to be,

σi +
nc∑

k=1

wik · xik ≤ Cmax, ∀Vi ∈ V, ∀ECk ∈ EC. (9)

In the meantime, if predecessor-successor task pairs are allo-
cated to different ECUs, then the data dependencies among them
are managed by the following equation,

σi + wik · xik + eij · (xjl + xik − 1) ≤ σj , (10)

where ECkandECl ∈ EC,ViandVj ∈ V, ∀eij ∈ E . On the
other hand, the following constraints ensure the executions of
two tasks allocated on the same ECU will never overlap,

σi + wik − σj ≤ M · (2 − xik − xjk)
OR

σj + wjk − σi ≤ M · (2 − xik − xjk),
(11)

Fig. 2. (a) The WCET schedule with period tp. (b) A hypothetical schedule
with only task Vθ for the entire period tp.

where ∀Vi %= Vj ∈ V, ∀ECk ∈ EC, and M is a large positive
constant.

Note that the constraints imposed by the equations (8–11)
ensure the minimal makespan and task precedence, but they
do not contemplate the thermal behavior in the mathematical
model. From equations (3) and (4), we can observe that the
temperature is a non-linear function of t and hence unsolvable
by linear solvers. Therefore, we use a simple thermal approach
in which each task has a constant stable status temperature
irrespective of the starting temperature and thermal capacitance
of the ECU [29], [49]. In particular, for any task Vj ∈ V , we can
set dT (t)

dt = 0 in equation (3) and obtain the constant stable status
temperature asT = Tambk +Rth · Ptotal. With this knowledge,
we can find the stable status temperature for any Vi ∈ V onECk

as

T ∗
k(i) =

A(i)

B
+ Tambk , ∀Tambk ∈ Tamb. (12)

Therefore, the highest system-wide temperature (denoted as T ∗)
can be formulated as

T ∗ = max
i,k

(T ∗
k(i)), ∀Vi allocated on ECk. (13)

Further, we have the following theorem to ensure thatT ∗ bounds
the peak temperature for any resultant task allocation.

Theorem 2: For any mapping of V to EC, with periodic ex-
ecution, the resultant highest system temperature never exceeds
T ∗.

Proof: Suppose ECk periodically executes n tasks
{V1, . . .,Vn} at a period tp, whose dynamic powers are
{Pd(1), . . ., Pd(n)} as shown in Fig. 2(a). Let task Vθ con-
sume the highest dynamic power among all tasks allocated on
ECk, i.e., Pd(θ) = max{Pd(1), . . ., Pd(n)}. Then, for all Vi

allocated on ECk, since Pd(θ) ≥ Pd(i), we have

T ∗
k(θ) ≥ T ∗

k(i). (14)

Using a hypothetical schedule that keeps at a constant power
consumptionPd(θ) in one period as Fig. 2(b) can bound the peak
temperature of the schedule shown in Fig. 2(a) because both the
execution time and power consumption for all Vi are not larger
thanVθ onECk in Fig. 2(b). When applying equation (14) on all
ECUs, T ∗ = maxi,k(T ∗

k(i)) can effectively bound the system-
wide peak temperature. !

With Theorem 2, we can readily add a peak temperature-
related constraint as follows,

T ∗ ≤ Tmax. (15)
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Also, we need to incorporate the minimization of peak tempera-
ture into the design objective. Note that to reduce the makespan
and to reduce the peak temperature are two conflicting design
objectives. How to deal with multi-criteria optimization in a
more sophisticated manner is not the focus of this paper. Instead,
we use a weighted sum as our optimization objective as follows,

Max : W1 ·
Cs − Cmax

Cs
+ W2 ·

Tmax − T ∗

Tmax
, (16)

where W1,W2 are the weights and W1 + W2 = 1. Cs is the
minimal makespan that a task set can complete on a given
ECS without considering its temperature constraint, reliability
optimization, etc. The mathematical program minimizes the
makespan of the application, but it can be readily adopted to use
makespan as a strict constraint according to the application’s
real-time requirement.

The mathematical programming approach presented in this
section has three challenges. First, it is well known that the
proposed method is NP-hard in nature. Second, to identify the
peak temperature, this approach adopts a strategy that assumes
an ECU can immediately reach its stable status [49], which is
pessimistic especially when the task execution time is very short
(from tens of microseconds to several milliseconds [29]). Third,
we can’t incorporate system-level lifetime reliability in the
mathematical programming framework due to the non-linearity.
Therefore, we resort to the meta-heuristic genetic algorithm [48]
to solve the Problem 1. In the following sections, we first study
how to capture the peak temperature under a task mapping
configuration, and then, we develop efficient MTTF calculations
accordingly.

V. BOUND THE WORST-CASE PEAK TEMPERATURE

A key to solve Problem 1 in Section III-D is to estimate
an accurate peak temperature for a given task/ECU mapping
configuration. Several approaches have been proposed to es-
timate the peak temperature of a processor. For example, the
numerical method splits each execution interval into short frag-
ments and attempts to find the peak temperature by checking
each small stretch (e.g. [50]–[52]). Also, an epoch-based peak
temperature detection methodology has been proposed using a
mix of analytical and numerical methods in [44] or by solving the
first-order derivative on each processing core via the Newton-
Raphson method in [45]. Another approach greedily searches
the worst-case task arrival cases to bound the runtime peak
temperature [26]. However, these approaches have very high
computation complexity (e.g. [26], [50]–[52]), which makes
them ineffective during the design space exploration.

For more computationally efficient approaches, besides the
simple thermal approach stated in Section IV, Chaturvedi
et al. [28] proposed a so-called “hypothetical step-up schedule”
to bound the peak temperature for a periodic schedule. However,
as shown in what follows, this approach works under the assump-
tions of each task instance always takes its worst-case execution
times. It may fail when the task’s execution time vary in runtime,
which is quite normal in practical automotive scenarios [53].

Fig. 3. An example of the step-up schedule.

Fig. 4. A motivational example.

A. Motivation Examples

In real-time computing, it is a common practice to use the
worst-case execution times to bound the longest completion time
of a task set under a scheduling policy. However, we find that
using the worst-case execution time-based real-time schedules
(e.g. [50]–[52]) can not always identify the highest possible
peak temperature during runtime. To put our discussions into
perspective, assume a task set contains three periodic tasks with
the same period, and one period of its schedule (based on the
worst-case execution times) is depicted in Fig. 3(a). Fig. 3(b)
shows its corresponding step-up schedule, with the same interval
lengths but organized so that the dynamic power consumptions
are monotonically increasing from the first interval to the last. It
has been formally proved that the peak temperature of a schedule
is bounded by its corresponding “step-up” schedule [28], [29].
For example, if w1k = 12 ms, w2k = 11 ms, w3k = 7 ms and
Pd(1) = 2.204 W, Pd(2) = 0.962 W, Pd(3) = 2.924 W with a
period 77 ms, using the experimental set-up in Section VII-A,
the peak temperature of the step-up schedule (Fig. 3(b)) is
51.97 ◦C, which bounds the actual peak temperature of 51.69 ◦C
for the schedule in Fig. 3(a). It is much smaller than the peak
temperature of 125.45 ◦C using the simple peak temperature
prediction approach of Section IV.

The example shown in Fig. 3 demonstrates that the step-up
schedule can guarantee peak temperature only when all the tasks
run with their worst-case execution times (WCETs). However,
the temperature bound given by a step-up schedule may be
violated when the tasks run with execution times lower than
their WCETs, as shown in the following motivational example.
Fig. 4(a) shows a step-up schedule with two tasksV1 and V2. As-
sume the dynamic power consumptions and the WCETs for V1

(V2 resp.) are 100 mW (3.86 W resp.) and 10 ms (10 ms resp.),
with a period of 20 ms. When tasks V1 and V2 take their WCETs
as Fig. 4(a) and execute long enough to reach their thermal stable
status, the peak temperature is 93.61 ◦C. However, the actual task
execution time may vary with the concurrent workload on one
chip [54]. Without losing the generality, assume in a period of
the stable status, task V1 changes its execution time between
0 and 10 ms as shown in Fig. 4(b). Then, the highest peak
temperature can reach 94.02 ◦C in Fig. 4(b) and violate the peak
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temperature predicted by Fig. 4(a). This motivation example
clearly shows that the step-up schedule can not effectively bound
the peak temperature for a periodic schedule when task execution
times are variable. Although it is possible to greedily search all
possibilities of execution time combinations (e.g., in [26]) for the
highest possible temperature, the computational cost could be
prohibitively high when applying to multiple-ECU cases with
tens to hundreds of applications. Therefore how to efficiently
bound the worst-case peak temperature remains a problem.

In what follows, we propose a time-efficient algorithm to
bound the peak temperature for variable execution time sce-
narios.

B. Accurate Peak Temperature Identification Algorithm

We begin with several lemmas to support the algorithm that
tightly bounds the peak temperature for variable execution time
scenarios and later prove a theorem to validate the proposed
algorithm’s effectiveness.

Lemma 1: Let ECk run n tasks V1,V2, . . .,Vn consecutively
with a tp period. Let Tm(q · tp) be the temperature at t = q · tp
when all tasks are executed with their WCETs. Then, we have
Tm(q · tp) ≥ T (q · tp), if T (q · tp) is the temperature at t = q ·
tp when at least one task instance from t ∈ [0, q · tp] runs with
execution time less than its WCET.

Lemma 2: Let ECk run Vi during an interval t ∈ [t1, t2] and
let ECk’s temperature at t1 be T1. Then ECk’s temperature
monotonically increases (decreases resp.) within interval t, if
T ∗
k(i) ≥ T1 (T ∗

k(i) ≤ T1 resp.).
As per Lemma 1, if at least one of the tasks on ECU executes

shorter than its WCET, then the temperature at the end of q-th
period is no larger than its WCET counterpart. From Lemma 2,
we deduce that if the individual task stable status temperature
is higher (lower resp.) than the starting point temperature in
an interval, the ECU temperature monotonically increases (de-
creases resp.) when running in a constant execution mode during
the interval. The detailed proofs of the lemmas are described in
Appendices A and B, respectively.

With Lemma 1 and 2, an algorithm is developed to identify the
peak temperature when an ECU runs a set of tasks that considers
task completion time variation during the runtime.

Algorithm 1 first calculates the stable status temperature
at the end of the application period, assuming that each task
takes its WCET (line 1). Then, lines 2-8 iteratively identify the
highest temperature of each interval in the schedule. Specifically,
if a task’s stable state temperature is higher than the current
temperature bound (Tm), the task is taken into account to bound
the possible higher peak temperature. Otherwise, the current
interval is not considered in determining the peak temperature
bound (Tm). Finally, the ending temperature for the last interval
is output as the peak temperature (line 9). The complexity of
Algorithm 1 is O(n), where n is the number of tasks allocated
to an ECU. Also, we formulate Theorem 3 as follows to en-
sure the guarantee of the peak temperature identified through
Algorithm 1.

Theorem 3: Let tasks {V1, . . .,Vn} be executed on ECUECk

periodically with variable execution times. Then, the highest

Algorithm 1: Bounding the Peak Temperature with Execu-
tion Time Variance.

Inputs: Task mapping based on WCET schedule of
ECk; Power/thermal parameters; Timing parameter
matrix Wnv×nc ;

Output: Temperature bound Tm of ECk.
1: Let Tm = Tss in Theorem 1 for the WCET schedule;
2: for each task Vi allocated on ECk do
3: Calculate T ∗

k(i) based on equation (12);
4: if T ∗

k(i) > Tm then
5: T ′

m = the ending temperature of running Vi with
initial temperature Tm;

6: Tm = T ′
m;

7: end if
8: end for
9: return Tm

possible temperature during the execution is no more than Tm

output from Algorithm 1.
This theorem is proved with the help of Lemma 1 and

Lemma 2 in Appendix C. It substantiates the effectiveness of
the peak temperature output from the proposed Algorithm 1.
Next, we discuss our new methods to compute the system-level
MTTF.

VI. COMPUTATIONALLY EFFICIENT SYSTEM-LEVEL MTTF
FORMULATION

In this section, we first briefly introduce the relevant back-
ground for the state-of-the-art method that accurately calculates
the system-level MTTF [16]. We then discuss the limitations of
the method in [16] and propose our computationally efficient
approaches to estimate the system-level MTTF.

Without losing the generality, we adopt the Weibull distribu-
tion to model the wear-out effects at the system-level [16]. The
reliability of a single ECU at time instant t with temperature T
is

R(t, T ) = e−(
t

η(T ) )
β

, (17)

where η(T ) and β represent scale and slope parameters of the
Weibull distribution, respectively. Then, we have

η(T ) =
MTTF (T )

Γ
(

1 + 1
β

) . (18)

When executing periodic tasks, the reliability of an ECU in one
period (tp) is a function of the temperature and duration for each
sub-interval (a = 0, . . . , s− 1) [16], which can be formulated
as

R(tp) = e
−
(

s−1∑
a=0

∆ti
η(Ti)

)β

. (19)

Let the aging factor of the ECU [16] be

A =
s−1∑

a=0

∆ti
η(Ti)

. (20)
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Then, the reliability of the ECU for q consecutive periods is

R(q · tp) = e
−
(

q·(s−1)∑
a=0

∆ta
η(Ta)

)β

= e
−
(
q·

s−1∑
a=0

∆ta
η(Ta)

)β

= e−(q·A)β .

Therefore, the reliability of the system with nc ECUs can be
expressed as

Rsystem(q · tp) = e
−

nc∑
b=1

(q·Ab)
βb

. (21)

As MTTF " tp, the system-level MTTF approximation can
be calculated at the end of each period as

MTTFsystem =
∞∑

a=0

e
−

nc∑
b=1

(a·Ab)
βb

· tp. (22)

To reduce the computational cost of (22), a more efficient
method, Speedup Technique-I is proposed in [16] by assuming
the reliability of an ECU keeps the same for every v periods.
The estimated system-level MTTF is

MTTF speed_up−I
system =

∞∑

a=0

e
−

nc∑
b=1

(a.Ab.v)
βb

.tp.v. (23)

The accuracy of the state-of-the-art system-level MTTF in
(23) depends on three parameters, i.e., the highest value of
a, period tp, and the number of periods v used to expedite
the approximation. It is advisable to reach a high value of a
until the MTTF is saturated, which drains a significant amount
of computation time, as later observed in Section VII-B. To
achieve higher computational efficiency, it is necessary to find
an alternative strategy to estimate the system-level MTTF effi-
ciently, reducing the computation time without compromising
the MTTF estimation accuracy significantly.

A. A Computing Efficient Approach for MTTF Calculation

When optimizing the system design goal such as MTTF
using meta-heuristics like a genetic algorithm or simulated
annealing, high computation efficiency of the design objective
function can enable a more effective design space exploration
process. As mentioned before, the approach based on (23) is
very time-consuming, which severely limits its searching scope
and efficiency. Therefore, it is highly desirable that a more
computing efficient approach for the MTTF calculation can be
utilized in the search engine during the design space exploration
process.

As the automotive applications have task interval lengths
in ms to µs [18], [55], an ECU’s temperature dynamics can
be safely treated as a constant value in a period. This fact
helps to simplify the system-level formulation of MTTF. Let
η1, η2, . . ., ηnc be the scale parameters of the EC given by (18).
We assume that they depend on a constant temperature over the
period, which can be calculated using the average temperature

of the period in the stable status

Tavg,b =

s−1∑
a=0

∫ la+1

la

A(a)
B +

(
T (ta)− Tambk − A(a)

B

)
e−B·∆a + Tambk

tp
,

(24)

where s represents the number of intervals in a period, ∆a =
(la+1 − la) is the length of each interval, tp is the period, and b
is the ECU index from 1 to nc.

To further improve the computational efficiency and safely
bound the MTTF in an ECS, we take advantage of using a
uniform slope parameter of the Weibull distribution on all the
ECUs to expedite MTTF computations by adopting the worst-
case wear-out rate on each unit. The ECS system reliability can
then be formulated as

Rsystem = e
−

nc∑
b=1

(
t
ηb

)β

. (25)

Based on equation (25), we can formulate the system-level
MTTF as

MTTFFast−same
system =

∫ ∞

0
e
−
∑nc

b=1

(
t
ηb

)β

dt. (26)

By substituting x =
∑nc

b=1

(
t
ηb

)β
in (26), we have

x = tβ ·
nc∑

b=1

(
1

ηβb

)
. (27)

x
1
β = t ·

(
nc∑

b=1

(
1

ηβb

)) 1
β

. (28)

Further, we have

t =
x

1
β

(
nc∑
b=1

(
1
ηβ
b

)) 1
β

, (29)

dt =
x

1
β−1 · dx

β ·
(

nc∑
b=1

(
1
ηβ
b

)) 1
β

. (30)

Note that t → 0 leads to x → 0 and t → ∞ leads to x → ∞.
Now, we can factor out (26) and obtain our fast MTTF formula
as

MTTFFast−same
system =

1

β ·
(

nc∑
b=1

(
1
ηβ
b

)) 1
β

∞∫

0

e−x · x
1
β−1 · dx,

(31)
which converges to the following simple form [56],

MTTFFast−same
system =

Γ( 1
β )

β ·
(

nc∑
b=1

(
1
ηβ
b

)) 1
β

. (32)
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Equation (32) is independent of compute-expensive integration
operations, andΓ( 1

β ) can be readily calculated. So, our proposed
MTTF estimation method in (32) is highly computation efficient
and can tightly bound the MTTF for a heterogeneous ECS.
As shown in Section VII-A(B), the proposed MTTF formula
in (32) can speed-up the computing efficiency of (23) by 12×
for synthetic test cases and 164× for the Real-Life benchmark.
Moreover, the proposed approximation approach can achieve
an average error below 0.1% for the estimation of system-level
MTTF.

B. Fast System-Level MTTF Calculation for ECUs With
Different Degradation Rates

The MTTF formula proposed in Section VI-A can accurately
estimate a system-level MTTF, when (i) the temperature fluctua-
tion in one period is small enough to be considered as a constant
value, e.g., when applications’ periods on an ECS are as short
as several µs or ms; (ii) the ECU’s wear-out rate has a negligible
variance compared to the worst-case wear-out rate in an ECS,
e.g., when all ECUs in an ECS have similar operational status and
ambient temperatures. However, according to [5], the ambient
temperature of different ECUs in one vehicle could vary as much
as 90◦C − 150 ◦C due to different mounting locations, which
may potentially cause a large wear-out rate variance within
an ECS. Therefore, equation (32) could result in an inaccurate
system-level MTTF estimation without an adequately justified
wear-out rate.

When adopting the uniform wear-out rate MTTF formula in
equation (32), results using the same slope parameter (β) of the
Weibull distribution can help to save several magnitudes of the
computational cost, but they may also deviate from the practical
heterogeneous ECU settings significantly. Although the state-of-
the-art method for system-wide MTTF calculation in equation
(23) can be used to address the heterogeneity of the ECU wear-
out rates, its computational cost could be prohibitively high. To
this end, we use heterogeneous thermal wear-out rates of all the
ECUs to construct system-wide statistical wear-out rate value,
which can be safely implanted into equation (32). Specifically,
let B = {β1, . . .,βnc} be the slope parameters of the Weibull
distribution for ECUs. Then, we implant four different statistical
parameters in (32), including maximal, minimal, average, and
geometric mean values, as follows:

1) Let β = βmax, where

βmax = max{β1, . . .,βnc}. (33)

2) Let β = βmin, where

βmin = min{β1, . . .,βnc}. (34)

3) Let β = βavg, where

βavg = average{β1, . . .,βnc} =
β1 + β2 + · · ·+ βnc

nc
.

(35)
4) Let β = βgeo, where

βgeo= geo mean {β1, . . .,βnc}= nc
√

β1 · β2 · . . . · βnc .
(36)

With different statistical wear-out rate approximations given
by (33)-(36), we can obtain an effective slope parameter for each
ECU as,

ηb =
MTTF (Tavg,b)

Γ
(
1 + 1

B

) , (37)

where b = 1, . . ., nc and B ∈ {βmax,βmin,βavg,βgeo}. With
the help of (32) we estimate the computationally efficient
system-level MTTF for different wear-out rates of the EC as,

MTTFFast−diff
system =

Γ( 1
B )

B ·
(

nc∑
b=1

(
1
ηB
b

)) 1
B

. (38)

Using the same parameter settings in Section VII-A(A), we com-
pare the MTTF accuracy of (38) with state-of-the-art equation
(23). We observe that the geometric mean (β = βgeo) generates
the lowest error in average (≈ 2%) among all the candidates for
both synthetic test cases and practical benchmarks. Therefore,
the rest of the paper uses β = βgeo for fast system-level MTTF
calculation for ECUs with different degradation rates with min-
imal accuracy degradation.

With a safer peak temperature bound and a more accurate and
efficient MTTF formulation, we are ready to employ a genetic
algorithm for Problem 1. Our genetic algorithm implementation
is similar to that presented in [48], and its set-up is briefly
described in the following section.

VII. EXPERIMENT RESULTS

In this section, we present our experiments and results to vali-
date the performance of our proposed approaches with different
parameter settings.

A. Experimental Set-Up

Our genetic algorithm is set-up as follows:! Chromosome design: Each chromosome represents a feasi-
ble solution to the task scheduling problem. Chromosome
comprises the first part as task mapping and later as the
task schedules. We randomly initialized the task mappings
on the given ECUs, and initial task schedules were gen-
erated with respect to the precedence constraints of the
DAG G = {V, E}. The pool of the initial population was
randomly generated with the chromosomes for the given
size.! Fitness function: The formulation of the fitness function is
crucial to refine the ECU design alternatives, and it also
impacts the solution’s superiority using a metaheuristic
approach. To solve Problem 1, we need to co-optimize the
makespan, peak temperature, and MTTF. First, we calcu-
lated the makespan similar to that in [48]. Then, we adopted
our proposed peak temperature bound in Algorithm 1 and
fast system-level MTTF with the same wear-out rate to-
gether. In another experiment, we endorsed the proposed
fast system-level MTTF formulation’s effectiveness with
different wear-out rates. Accordingly, our fitness functions
are:
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1) The peak temperature for both Genetic Algorithms (GAs)
is calculated using our proposed Algorithm 1. The system-
level MTTF values are estimated by (23) and (32) for both
GAs to compare their performance. We normalized the
makespan, temperature, system-level MTTF and defined
the weighted fitness function as,

f1 = P1
Cl − Cmax

Cl
+ P2

Tmax − Tm

Tmax

+ P3
MTTFsystem

MTTFmax
, (39)

where P1,P2,P3 are the weights having P1 + P2 + P3 =
1, and Cl is the smallest possible makespan derived from
the solutions of the first generation. MTTFmax is a
system-level maximum MTTF estimated by assuming the
ambient temperature for each ECU.

2) Our experimental study also examines the efficacy of the
proposed system-wide MTTF calculation for ECUs with
different wear-out rates by implementing two separate
GAs with the system-level MTTF calculation by (23) and
(38), respectively. We used a normalized weighted sum
of the makespan and system-level MTTF in the objective
function as

f2 = R1
Cl − Cmax

Cl
+ R2

MTTFsystem

MTTFmax
, (40)

where R1,R2 are the weights with R1 + R2 = 1 and other
parameters have the same significance as in the above
case-(1). The fitness functions given by equations (39)
and (40) explore the design space to search the solution
with minimum makespan of the application by satisfying
other design constraints.! Parent/survivor selection: Due to multi-objective fitness

functions, we maintained the Pareto optimal front during
the evolution process from generations-to-generations and
used the tournament selection policy to choose the sur-
vivors for the next generation [48]. In the tournament se-
lection, we randomly chose 10 chromosomes, sorted them
based on their fitness, and picked the top 5 for crossover and
mutation. The remaining 5 elements act as the non-evolved
chromosomes for the next generation.! Crossover/mutation operators: We used an adaptive
crossover operator on the task mapping part of the survivor
chromosomes. For randomly chosen two chromosomes, a
crossover point is randomly selected between 1 to nv , and
the parts of the two chromosomes after it are exchanged
to produce two descendants. Afterward, the crossover de-
scendants are mutated, where any of the pre-mapped tasks
in a chromosome is randomly selected, and its mapping
is randomly altered to another ECU. (see [48] for more
details)

We utilize both synthetic test cases and practical benchmarks
to verify the performance of the proposed approaches in terms of
temperature bound and system-level MTTF formulations. The
parameters for the ECUs used in our experiments are described
in Table I.For synthetic test cases, the task graphs were randomly

TABLE I
ECU PARAMETERS FOR THE EXPERIMENT [24], [57]

TABLE II
BENCHMARK PARAMETERS

‡described in [18], §described in [55], ¶described in [24].

generated using a Task Graph Generator [18] with average
computation cost = 15 ms, communication to computation ratio
= 1, and the shape parameter varied in the range of [0.3, 0.9]
to cover a wide gamut of the test cases. The dynamic power
for all task nodes was chosen to be uniformly distributed in the
range of [0.1W, 3.86W ] adhering to practical automotive sys-
tems [24]. Apart from synthetic tests, we verified our proposed
formulations on two practical benchmarks, Real-Life [18] and
Automotive Cruise Controller (ACC) [55], with their parameters
listed in Table II.

To achieve about 10 years of a lifetime by assuming a drive
time of 2.5 hours per day for an ECU at the temperature of
80 ◦C [42], we used Ac = 10−7cm2, J = 5.7 ∗ 105 Amp/cm2,
and Ea = 0.48 eV to estimate the electromigration-induced
MTTF [46]. For the existing model of system-level reliability, we
used v = 100 in equation (23) [16]. The ambient temperatures
were randomly chosen in the interval [35 ◦C, 45 ◦C] to account
for the variation of the ECU mounting locations if not otherwise
specified.

Our experiments were lined-up in the following two major
categories:

a) Verification of different approaches to our target research
problem: For this set of experiments, we compare the
effectiveness and efficiency of different approaches to our
research problem, i.e., Problem 1 in Section III-D. Our
experiments were conducted based both on synthetic test
cases as well as practical real-life benchmarks. Specifi-
cally, for synthetic test cases, we adopted an ECS contain-
ing 3 ECUs with 10, 15, 20, and 25 tasks to simplify trac-
ing parameter trade-offs. A sufficiently high-temperature
threshold Tmax of 150 ◦C was set because the simple
thermal approach can lead to a very high peak temperature
and the mathematical solver is unable to produce a feasible
solution under a tightly constrained Tmax otherwise.
In our genetic algorithm implementation, the initial so-
lution pool was chosen to be 500 random samples, and
the genetic algorithm was progressed for 400 generations,
thereby terminating with Pareto optimal front solution in
the end. The uniform worst-case slope parameter of the
Weibull distribution was chosen to be β = 2 [16]. For
both synthetic test cases and benchmarks, without losing
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TABLE III
AVERAGE CPU TIME

TABLE IV
AVERAGE MTTF ERROR PERCENTAGE

generality, we set the weight combinations as W1 = W2 =
1/2 and P1 = P2 = P3 = 1/3, which commits an equal
influence to each parameter.
The four approaches tested in this category are stated
below:! Temperature oblivious approach (M-TO): The mathe-

matical programming model that minimizes the appli-
cation makespan but does not consider thermal behav-
ior as the state-of-the-art integer linear programming
method in [47].! Simple thermal aware approach (M-STA): The math-
ematical programming approach explained in Section-
IV that assumes an ECU reaches its stable status tem-
perature immediately [29], [49].! Accurate peak temperature identification with fast
MTTF calculation (G-APTI-FMC): The genetic
algorithm-based approach bounds the peak tempera-
ture accurately with the proposed Algorithm 1 and
proposed fast system-level MTTF formulation using
a uniform system-wide wear-out rate as described in
Section-VI-A.! Accurate peak temperature identification with tradi-
tional MTTF calculation (G-APTI-TMC): The genetic
algorithm-based approach that identifies the peak tem-
perature accurately using the proposed Algorithm 1 and
the state-of-the-art system-level MTTF formulation in
equation (23) [16].

b) Verification of the proposed approaches for fast system-
level MTTF calculation: For this set of experiments, we
focus our study on the efficacy of the proposed approaches
for fast MTTF calculation. To study the performance of our
fast MTTF calculation based on the same degradation rate,
i.e., based on equation (32), we assumed that all tasks were
assigned to a single ECU in our generated synthesized
test cases and real-life benchmarks. We compared this
approach with the traditional approach (i.e., [16]), and the
results for the average CPU times and error percentages by
these two approaches were collected and listed in Table III
and Table IV, respectively.
We then extended our experiments to more sophistic sce-
narios when different ECUs may have different degrada-
tion rates. To this end, we assumed the system contains

100 tasks and the number of ECUs to be 5, 10, 15, and 20.
We randomly chose the slope parameter β for each ECU
in the range [2, 3], which signifies the early lifetime wear-
out [58]. We used the equal weights as, R1 = R2 = 0.5 in
this set-up. The following approaches were implemented
and tested:! Traditional MTTF calculation with different degradation

rates (G-TMC-DDR): It is a genetic programming-based
approach with the objective of makespan minimization and
system-level MTTF maximization, which is estimated by
the existing method in equation (23) [16]. Here we used
the GA with the initial solution space of 100 samples and
evolution over 200 generations.! Fast MTTF calculation with different degradation rates
for small size of GA (G-FMC-DDR-S): It is a genetic
algorithm-based approach that minimizes the makespan
and maximizes the system-level MTTF estimated by the
proposed formulation in Section-VI-B with an initial pop-
ulation pool of 100 samples, and we evolve it for 200
generations.! Fast MTTF calculation with different degradation rates for
large size of GA (G-FMC-DDR-L): It is also a genetic
algorithm-based approach that minimizes the makespan
and maximizes the system-level MTTF estimated by the
proposed formulation in Section-VI-B with an initial pop-
ulation pool of 500 samples and evolved for 1000 genera-
tions.

The industrial-grade linear solver CPLEX 12.10.0 was used
to solve the formulated mathematical programming problems
of M-TO and M-STA. Whereas G-APTI-FMC, G-APTI-TMC,
G-FMC-DDR, G-TMC-DDR-S, and G-TMC-DDR-L were im-
plemented using Matlab R2020a, running on an HP Z800 server
with 24 cores and 32 GB memory.

B. Experimental Results and Discussions

This section presents the experimental results for the set-up
described in the previous section and discusses our findings in
detail.

a) Verification of different approaches to our target research
problem: Fig. 5 shows the results (average peak temper-
ature, average system-level MTTF, average makespan,
and average CPU time) by four different approaches,
i.e., M-TO, M-STA, G-APTI-FMC, and G-APTI-TMC, as
introduced above.
From Fig. 5(c), we can see that M-TO has the smallest
makespan among all the approaches, but Fig. 5(a) and
Fig. 5(b) show that M-TO has the highest peak temperature
and the lowest system-level MTTF. This result clearly
indicates that constraining the peak temperature in an
automotive ECS is necessary for hardware protection and
system-wide lifetime reliability enhancement. When ther-
mal behavior is considered, the makespans for other ap-
proaches become longer since the temperature constraint
limits the computational throughput on an ECU. Also,
with increased thermal prediction accuracy, G-APTI-FMC
and G-APTI-TMC allow to have a longer makespan but
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Fig. 5. Experimental results for 3-Processor system. (a) Avg. system peak-
temperature. (b) Estimated avg. system-level MTTF. (c) Avg. makespan.
(d) Avg. CPU time.

a much lower peak temperature and higher system-level
MTTF, as clearly shown in Fig. 5(a) and 5(b).
Meanwhile, from Fig. 5(a), we observe that the average
peak temperatures for G-APTI-FMC and G-APTI-TMC
differ approximately in the range of 0.1 ◦C to 0.3 ◦C.
Also, in Fig. 5(c), their makespans differ by 0 ms to
1 ms. Similarly, the estimated average system-level MTTF
differ by 0.1%, 0.26%, 0.77%, and 0.44% respectively
from 10 to 25 tasks as depicted in Fig. 5(b). But, as
observed in Fig. 5(d), there is a significant difference in
CPU times between the G-APTI-TMC and G-APTI-FMC.
Thanks to our fast MTTF calculation methods, our ap-
proach (G-APTI-FMC) can achieve similar performance
results (average peak temperature, average makespan, and
overall average system-level MTTF) with the CPU times
about 23 to 31 times lower than G-APTI-TMC.
In terms of peak temperature identification accuracy, if
we compare the results by G-APTI-TMC with M-STA in
Fig. 5(a), we can see that M-STA is quite pessimistic,
i.e., by 15.3 ◦C, 11.9 ◦C, 13.2 ◦C, and 18.5 ◦C as the task
numbers increase from 10 to 25. These results demonstrate
that our proposed temperature identification methods, as
shown in Algorithm 1, can greatly help G-APTI-TMC
to obtain the solution with significantly reduced peak
temperature and much improved system-level MTTF over
M-STA, as much as 44.38%, 31.49%, 40.78%, and 64.61%
as observed in Fig. 5(b).
From Fig. 5(d), we can also see that the computational
cost for M-TO and M-STA increases rapidly due to the NP-
hard nature of the mathematical programming technique.

TABLE V
RESULTS OF REAL-LIFE BENCHMARK

TABLE VI
RESULTS OF ACC BENCHMARK

Even so, their CPU times are still lower than that by G-
APTI-TMC. Besides their ineffectiveness in dealing with
temperature issues, the results clearly show that M-TO and
M-STA cannot be used for large-scale systems when the
task and ECU numbers continue to grow. In the meantime,
the results also highlight the need to speed-up the system-
wide MTTF calculation in design space exploration.
Similar findings are observed for the two automotive
benchmarks. For a practical Real-Life benchmark, as
shown in Table V, there is an average makespan difference
of 2µs, an average peak temperature difference of 0.1 ◦C,
and an MTTF difference of 1 Hr between G-APTI-FMC
and G-APTI-TMC, but G-APTI-FMC can speed-up the
system-level MTTF calculations by 191 times than G-
APTI-TMC. On the other hand, M-STA is 40.1 ◦C higher
in peak temperature and 3616 Hr lower in system-level
MTTF than G-APTI-FMC, which underlines the impor-
tant contribution of the proposed G-APTI-FMC for the
practical systems.
In the meantime, for the ACC benchmark, in Table VI,
we can see that our proposed approach G-APTI-FMC can
improve the computation efficiency of G-APTI-TMC by
over 17 times with degradation in the peak temperature and
system-level MTTF no more than 0.4 ◦C and 75 Hr, re-
spectively. Compared with M-TO (M-STA, resp.), G-APTI-
FMC can improve the peak temperature and system-level
MTTF with 22.1 ◦C (17.4 ◦C, resp.) and 1801 Hr (1811
Hr, resp.), respectively.

b) Verification of the proposed approaches for fast system-
level MTTF calculation: For single ECU or ECUs with
similar degradation rates, as shown in Tables III and IV,
our proposed fast MTTF calculation can be extremely
efficient and effective. As shown in Table III, the proposed
MTTF method can speed-up the computations about 12×
for synthetic test cases and 164× for the Real-Life bench-
mark compared with the state-of-the-art method (23). In
the meantime, from Table IV, we can see that the average
error is less than 0.1% for both synthetic task cases and
practical automotive benchmarks.
To consider the case when different ECUs may have
different degradation rates, we propose four candidate
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Fig. 6. Average error percentage. (a) Synthetic Test Cases. (b) Practical
Benchmarks.

approaches, i.e., (33)-(36), to be used in (38). We tested
these four approaches by mapping 100 tasks on 5, 10, 15,
20 ECUs in the synthesized test cases and our two practical
benchmarks. We compare their performance in MTTF
calculations by collecting the estimation errors normalized
by the traditional one [16] (equation (23)). These results
are denoted as βmax,βmin,βavg, and βgeo, respectively,
and shown in Fig. 6.
As shown in Fig. 6(a) and 6(b), we can see that the
approach with βgeo has less than a 2% average error
compared to the existing system-level MTTF equation
(23) for both synthetic test cases and practical benchmarks.
Further, we analyze the proposed methodology to compute
the system-level MTTF with different degradation rates.
We randomly generated the synthetic test cases for the
configurations of 100-Tasks and 5, 10, 15, 20 ECUs and
collected the 100 feasible test results, together with their
peak temperatures, system-level MTTFs, makespans, and
CPU times of the solutions, shown in Fig. 7.
In design space exploration, e.g., in a genetic algorithm
or simulated annealing, evaluating the design objective
function accurately and quickly is vital for the algo-
rithm’s effectiveness. To accurately evaluate the fitness
of a design alternative helps to direct the search in the
right direction, while the computation efficiency in fitness
evaluation enables an extensive design space exploration.
With the similar size of design space by G-TMC-DDR and
G-FMC-DDR-S, as shown in Fig. 7(a), we observe that
the average peak temperatures differ by 0.1 ◦C, 0.2 ◦C,
0.9 ◦C, 0.3 ◦C when ECU numbers increase from 5 to
20. Accordingly, their average system-level MTTFs differ
by 0.8%, 0.6%, 1.9%, and 2.1%, as shown in Fig. 7(b)
and their average makespans differ by 0 ms, 5 ms, 1 ms,
2 ms in Fig. 7(c). However, as observed in Fig. 7(d)
(left Y-axis for the G-TMC-DDR, right Y-axis for the
G-FMC-DDR-S and G-FMC-DDR-L), the CPU time of
the G-TMC-DDR is 54, 95, 110, 108 times higher than
that of G-FMC-DDR-S, respectively, as the ECU number
increase from 5 to 20. Hence, with our fast MTTF calcula-
tion as formulated in (38), we can achieve a similar (a little
inferior) performance in terms of the peak temperature,
system-level MTTF, and makespan, but significant CPU
time improvement.

Fig. 7. Experimental results for 100-Tasks system. (a) Avg. system peak-
temperature. (b) Est. avg. system-level MTTF. (c) Avg. makespan. (d) Avg.
CPU time.

The highly efficient MTTF calculation enables us to search
a much larger solution space. In G-FMC-DDR-L, we
increase both the population size and the reproduction
generations in the genetic algorithm, with the total size
of design space increased by 25 times. As observed in
Fig. 7(d), with increased search space, the G-FMC-DDR-L
approach requires more CPU time than G-FMC-DDR-S,
but it helps to yield better results. For G-FMC-DDR-L,
in Fig. 7(a), we see that the average peak temperature
is reduced by 0.5 ◦C, 1.8 ◦C, 2.7 ◦C, 2.6 ◦C when ECU
numbers increase from 5 to 20. Accordingly, their average
system-level MTTFs improve by 113 Hr, 622 Hr, 434
Hr, 764 Hr as shown in Fig. 7(b), and Fig. 7(c), the
average makespans reduced by 25 ms, 23 ms, 16 ms,
18 ms compared with G-TMC-DDR. In the meantime, it
is worth mentioning that, by increasing the size of the
initial population and number of generations for evolution
in G-FMC-DDR-L, we can obtain solutions with better
performance metrics (i.e., average peak temperature, aver-
age system-level MTTF, and average makespans). Simul-
taneously consuming much less CPU times, i.e., 3, 6, 7, 8
times less than the G-TMC-DDR according to Fig. 7(d).
We can see similar results from the two practical auto-
motive benchmarks. As shown in Table VII, comparing
G-TMC-DDR and G-FMC-DDR-S, there is not much
change in the average makespan. Their peak temperatures
differ slightly by 0.33 ◦C, and average MTTF also differ
slightly by 15 Hr. However, G-FMC-DDR-S is faster
than G-TMC-DDR by 100 times. In the meantime, as
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TABLE VII
RESULTS OF ACC BENCHMARK FOR DIFF DEGRADATION RATE

TABLE VIII
RESULTS OF REAL-LIFE BENCHMARK FOR DIFF DEGRADATION RATE

shown in Table VIII, the makespan, peak temperature,
and MTTF estimation for G-FMC-DDR-L outperform
G-TMC-DDR significantly, i.e., by 26 µs, 3.64 ◦C, and
694Hr, respectively, with CPU time 124 times lower. The
prominence of our fast system-level MTTF calculation
helps to achieve better design space exploration due to
low timing complexity in the practical systems and offers
better results.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we study how to map a periodic automotive
application on ECU with temperature issues taken into consid-
eration. We first propose a mathematical programming approach
to meet the peak temperature constraint while reducing the
application latency. We further propose a more sophisticated
genetic algorithm-based approach to deal with the peak temper-
ature constraint and system-wide reliability optimization. To this
end, we develop two key algorithms, i.e., guaranteeing the peak
temperature for periodic tasks with variable execution times
and the analytical approach for system-wide MTTF calculation,
which can speed-up the process by several orders of magnitudes.
Experimental results for two practical automotive benchmarks
show that the proposed peak temperature algorithm is accurate
by 17 ◦C and 40 ◦C, which results in 81% and 260% more
accurate MTTF estimation. At the same time, the proposed
MTTF formulation is faster by 17× and 191× with an accuracy
loss of less than 0.1%, which validates the efficiency of our
proposed approach.

As the automotive industry is set to be transformed into au-
tonomous cars, the temperature will play an increasingly critical
role in the safety and reliability of automotive applications,
especially as more advanced Artificial Intelligence (AI)/Deep
Learning technologies are incorporated into autonomous driving
systems. The future work of this research includes extending
the thermal awareness to more advanced AI/Deep Learning
applications and more advanced hardware architecture, such as
those that incorporate GPU and dedicated NPU hardware units
that can accommodate such applications.

Fig. 8. (a) The WCET schedule with an ending temperature of Tm(q · tp) in
the stable status. (b) The schedule with a varied execution time with an ending
temperature of T (q · tp) in the stable status.

APPENDIX A
PROOF OF LEMMA 1

Lemma 1: Let an ECU ECk run n tasks V1,V2, . . .,Vn con-
secutively with a period of tp. Let Tm(q · tp) be the temperature
at t = q · tp when all tasks are executed with their WCETs.
Then, Tm(q · tp) ≥ T (q · tp), if T (q · tp) is the temperature at
t = q · tp when at least one task instance from t ∈ [0, q · tp] runs
with execution time less than its WCET.

Proof: Let’s consider an arbitrary schedule with n tasks and
period tp as shown in Fig. 8. Let Tm(q · tp) and T (q · tp) be the
temperature at t = q · tp in Fig. 8 a and Fig. 8 b, respectively. In
Fig. 8 a, all the tasks take their respective WCETs. In Fig. 8 b,
the execution time of task V2 is reduced by ∆ compared to its
WCET. Therefore, the starting time of the remaining tasks in the
scheduling sequence remains the same or is shifted to the left
by ∆ amount of time. From these two figures, we indeed find
that both schedules are identical up-to-time instant (tr −∆),
so as their temperature, T (tr −∆) = T ′(tr −∆). Let T (tr)
and T ′(tr) be the starting temperatures for the remaining part
of the schedules, respectively. The schedule in Fig. 8 a has a
higher accumulated computing time at (q · tp) than the schedule
in Fig. 8 b, and the workload in Fig. 8 b is moved away from
t = q · tp. Based on Lemma 3 of Schor et al. [59], we conclude
that Tm(q · tp) ≥ T (q · tp). !

APPENDIX B
PROOF OF LEMMA 2

Lemma 2: Let an ECU ECk run Vi during an interval t ∈
[t1, t2] and let ECk’s temperature at t1 be T1. Then, ECk’s
temperature monotonically increases (decreases resp.) within
interval t, if T ∗

k(i) ≥ T1 (T ∗
k(i) ≤ T1 resp.).

Proof: From equation (3), we can infer that whenECk reaches
its stable state temperature, equation T ∗

k(i) = Rth · Ptotal(i) +

Tambk holds, since dT (t)
dt = 0. From equation (3), we can also

infer that

dT1

dt
=

−T1 +Rth · Ptotal(i) + Tambk

Rth · Cth

=
−T1 + T ∗

k(i)

Rth · Cth
. (41)

Since T ∗
k(i) ≥ T1, we have dT1

dt ≥ 0. Then, ECk’s temperature
monotonically increases and vice-versa. !
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Fig. 9. (a) The WCET schedule. (b) The schedule with a varied execution time
of tasks Vθ in a stable state.

APPENDIX C
PROOF OF THEOREM 3

Theorem 3: Let tasks {V1, . . .,Vn} be executed on ECU ECk

periodically with variable execution times. Then, the highest
possible temperature during the execution is no more than Tm

output from Algorithm 1.
Proof: Let a baseline schedule contain n tasks {V1, . . .,Vn}

with period tp and each task takes its WCET, as shown in Fig. 9
a. Without losing generality, we assume Fig. 9 b contains all the
same intervals as Fig. 9 a, except task Vθ whose execution time
is reduced by ∆ in the q-th period.

Let TW (t) and TA(t) be the temperatures at the instance of
t for Fig. 9 a and Fig. 9 b, respectively. Based on Lemma 1, at
t = (q · tp), we can infer that the temperature of Fig. 9 b is no
larger than Fig. 9 a, so we have

TW (q · tp) ≥ TA(q · tp). (42)

Now, consider a period from t = (q · tp) to t = ((q + 1) · tp).
Starting from t = (q · tp) let the temperature output based on
Algorithm 1 be T̃W (i) after going through task Vi in the loop
(line 2-7) in Algorithm 1. Then, based on Lemma 2, T̃W (i) must
be equal or higher than the temperature when completingVi with
the schedule in Fig. 9 b. Meanwhile, the starting temperature at
each interval considered in Algorithm 1 is no lower than that of
TA(q · tp). Therefore, T̃W (i) monotonically increases to Tm in
each valid interval as per Algorithm 1.

On the other hand, for the schedule in Fig. 9 b, if taskVi has the
stable state temperature lower than TA(q · tp), the temperature
will be lowered. Therefore, we certainly find that at any time
instant, the temperature predicted by Algorithm 1 (i.e., Tm) is
higher than its periodic counterpart with varied execution times
of the tasks. !
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The demand for high performance I/O in Storage-as-a-Service (SaaS) is increasing day by day. To address
this demand, NAND Flash-based Solid-state Drives (SSDs) are commonly used in data centers as cache- or
top-tiers in the storage rack ascribe to their superior performance compared to traditional hard disk drives
(HDDs). Meanwhile, with the capital expenditure of SSDs declining and the storage capacity of SSDs increas-
ing, all-!ash data centers are evolving to serve cloud services better than SSD-HDD hybrid data centers.
During this transition, the biggest challenge is how to reduce the Write Ampli"cation Factor (WAF) as well
as to improve the endurance of SSD since this device has a limited program/erase cycles. A speci"ed case
is that storing data with di#erent lifetimes (i.e., I/O streams with similar temporal fetching patterns such as
reaccess frequency) in one single SSD can cause high WAF, reduce the endurance, and downgrade the per-
formance of SSDs. Motivated by this, multi-stream SSDs have been developed to enable data with a di#erent
lifetime to be stored in di#erent SSD regions. The logic behind this is to reduce the internal movement of
data—when garbage collection is triggered, there are high chances of having data blocks with either all the
pages being invalid or valid. However, the limitation of this technology is that the system needs to manually
assign the same streamID to data with a similar lifetime. Unfortunately, when data arrives, it is not known
how important this data is and how long this data will stay unmodi"ed. Moreover, according to our obser-
vation, with di#erent de"nitions of a lifetime (i.e., di#erent calculation formulas based on selected features
previously exhibited by data, such as sequentiality, and frequency), streamID identi"cation may have varying
impacts on the "nal WAF of multi-stream SSDs. Thus, in this article, we "rst develop a portable and adaptable
framework to study the impacts of di#erent workload features and their combinations on write ampli"cation.
We then propose a feature-based stream identi"cation approach, which automatically co-relates the measur-
able workload attributes (such as I/O size, I/O rate, and so on.) with high-level workload features (such as
frequency, sequentiality, and so on.) and determines a right combination of workload features for assigning
streamIDs. Finally, we develop an adaptable stream assignment technique to assign streamID for changing
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workloads dynamically. Our evaluation results show that our automation approach of stream detection and
separation can e!ectively reduce the WAF by using appropriate features for stream assignment with minimal
implementation overhead.
CCS Concepts: • Computer systems organization→Multiple instruction, multiple data;
Additional Key Words and Phrases: Solid state drives, multi-streaming, write ampli"cation factor, I/O stream
detection, coherency, I/O workload characterization, NAND #ash endurance
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Janki Bhimani, Zhengyu Yang, Jingpei Yang, Adnan Maruf, Ningfang Mi, Rajinikanth Pandurangan, Changho
Choi, and Vijay Balakrishnan. 2022. Automatic Stream Identi"cation to Improve Flash Endurance in Data
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1 INTRODUCTION
The emergence in I/O intensive applications requires more fast and more reliable storage pools.
Flash-based storage devices such as Solid-state Drives (SSDs) thus becoming the mainstay due
to their better performance compared to traditional hard disk drives (HDDs), and as a result,
today’s computing devices widely adopt SSDs. Moreover, the decrease in NAND #ash cost-per-
gigabyte further accelerates the adoption of SSDs to support enterprise datacenters and virtualized
cloud environments.

Although with many advantages of NAND #ash technology, one major drawback lies in its lim-
ited number of Write Cycles. In SSD, there are three main operations, i.e., Read, Program (write)
and Erase (delete). Among these operations, Read and Program can be performed at the page level.
However, Erase can only be performed at a larger unit of erasure block level that consists of mul-
tiple pages. In order to reclaim free space to write new data, the SSD device needs to erase the
whole block. The valid pages in the selected block are copied to a new block before erasing. This
process of selecting the erase block and moving its valid pages before erasing is called Garbage
Collection (GC). Consequently, actual physical writes performed on the SSD device internally are
more than the total logical writes performed by user applications running on the host. The ratio of
the amount of data physically written to the NAND #ash, including additional internal writes, to
the amount of data logically written by user applications running on the host, is known as Write
Ampli!cation Factor (WAF). The lower WAF indicates better endurance of an SSD device. This
is because the #ash cells in SSD have a "xed number of write cycles (also called as the program
and erase (PE) cycles), and once the limit is reached, the corresponding cell is worn out and can-
not be used anymore (i.e., died). Therefore, it is essential to have an e$cient data placement on
SSDs for reducing the WAF and enhancing the endurance of SSDs. There are numerous of tech-
nologies proposed to address this WAF issue, and one of them is multi-stream SSD. The motivation
is to enable data with a di!erent lifetime to be stored in di!erent SSD regions so that the internal
movement of data can be reduced.

Multi-stream SSDs: In data centers, the period data resides is often highly variable. Upon
storing such data in SSDs, it often inevitably causes a large degree of data fragmentation due to
data invalidation and then dramatically increases the WAF when garbage collection is triggered. To
address this issue, the storage industry recently developed a new multi-streaming technology [23]
that allows a host system to explicitly open di!erent streams in SSD devices and allocate write
requests to these streams according to the expected lifetime of data. Traditional SSDs have only
one active append point where new data is written. Now, multi-stream technology enables the
device to maintain more than one open erase block to append data writes in di!erent physical
locations of an SSD. In a multi-stream SSD [1], streamIDs are assigned to data according to their
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Fig. 1. Operation of Multi-stream SSDs with respect to I/O stack.

lifetime. The assignment of streamIDs can be done at any layer, such as the application layer, the
!le system layer, or the block layer. Figure 1 shows the I/O stack of a multi-stream SSD where
streamID identi!cation is made at the block layer. Once each logical block is assigned a streamID,
a list of logical blocks with their corresponding streamIDs will be sent as an input to the Flash
Translation Layer (FTL) in the multi-stream SSD device. The FTL then stores data blocks with
the same streamID to the same physical blocks. This ensures that data with the same lifetime
(i.e., the same streamID) can be invalidated together, which thus reduces the garbage collection
overhead and results in low write ampli!cation by avoiding extra internal data movements.

Challenges of Using Multi-Stream Technology: An e"cient streamID assignment in multi-
stream #ash drives can reduce write ampli!cation and improve the endurance of SSDs. To achieve
the best possible bene!t of multi-stream SSDs, it is critical to construct good streams, i.e., data
with similar lifetime should be assigned the same streamIDs. However, it is challenging to predict
the data lifetime. Although historical information of di$erent features (such as frequency, sequen-
tiality, and so on.) for past data accesses can be used to predict the expected lifetime of data, we
found that stream identi!cation using di$erent features may have di$erent impacts on the WAF of
multi-stream SSDs. Moreover, feature sets that can accurately capture the expected lifetime of data
may vary with di$erent applications and workloads. Using a combination of not useful features
cannot o$er good performance improvement of multi-stream SSDs over no-streaming legacy SSDs.
Therefore, a good streamID assignment technique to quantify the impact of di$erent features and
their combinations on the endurance of SSDs is essential.

Novel StreamID Assignment Approach: We extract various I/O workload features (e.g., fre-
quency, adjacent access, and sequentiality) to study the impacts of these features and their com-
binations on write ampli!cation of multi-stream SSDs. However, we observed that these features
are not su"cient to capture the lifetime of data when using them individually. We thus propose
a new feature, named coherency, to capture the friendship between logical blocks. Coherency can
be more closely related to the lifetime of data. Unfortunately, by investigating all these di$erent
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features, we found that none of the features (e.g., frequency, adjacent access, sequentiality, and
even coherency) can be claimed as the best for all I/O workloads, di!erent features have varying
impacts on WAF, and the bene"t derived by using the combination of multiple features is not ad-
ditive. Thus, another big challenge in developing this multi-stream framework is how to determine
a combination of workload features that are best for assigning appropriate streamIDs under a given
I/O workload.

To address this issue, we build an analytical correlation model to capture the co-relation between
easily obtained workload attributes (such as I/O size, random write ratio, reuse ratio, and autocor-
relation of write rates) with high-level workload features (such as frequency and coherency) and
develop a novel Feature-based I/O Stream identi!cation (FIOS) method to identify the best
set (or combination) of features suitable to a workload for streamID assignment. FIOS can obtain
a good feature combination automatically rather than experimenting with all possible combina-
tions in a brute-force manner. we believe in the domain of multi-stream SSDs, this work is very
important, as this is the "rst work that systematically measure, quantify, and understand the per-
formance of multi-stream SSDs while running simultaneous instances of various containerized
applications.

We modify the SSD module of DiskSim1 [7] to simulate the multi-stream SSDs. First, we imple-
ment FIOS in modi"ed DiskSim and then spend a lot of e!orts and time towards designing Linux
kernel Daemons for the real system implementation of OFIOS. We compare our performance with
the state-of-the-art algorithms [39, 40, 42]. We consider the legacy SSDs that do not use multi-
streaming technology as the baseline. Our experimental results show that our techniques can al-
ways identify a good combination of appropriate features to decide streamIDs and thus be able to
improve the lifetime of SSD devices by reducing WAF.

Summarizing, this article provides the following major contributions
— Investigate the correlation between workload attributes (e.g., reuse ratio, write rate, and

so on.) and high-level application features (e.g., coherency, sequentiality, and so on.), and
analyze the impact of di!erent features and their possible combinations on SSD write am-
pli!cation (WA).

— Propose a new feature, coherency, which represents the friendship between write operations
with respect to their update time.

— Design a dynamic streamID detection scheme, which can determine a good combination of
multiple features for di!erent workloads.

— Develop and implement in Linux kernel, a parallel background learning mechanism that
does not interfere with foreground stream identi"cation.

— Design a novel auto-tuning module to dynamically identify and set the best feature combi-
nation while running simultaneous parallel instances of diverse containerized applications.

Section 2 presents the preliminary results to motivate this research. Section 3 presents the frame-
work design of our proposed FIOS and OFIOS. Section 4 describes the architecture and data struc-
tures used and explains the system modi"cations required to deploy our framework. Section 5
describes the details of our platform setup to perform the evaluation. In Section 6, we evaluate
FIOS and OFIOS. We discuss the implementation choices and overheads in Section 7. Section 8
presents related works. Lastly, we summarize our conclusions and future plan in Section 9.

2 MOTIVATION
The technology of multi-stream SSDs [1, 15] is newly invented to allow to explicitly write di!er-
ent data that are associated with each other or have a similar lifetime into a single stream. That

1https://github.com/benh/disksim/tree/master/ssdmodel.
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Fig. 2. Correlation Coe!icient in RocksDB: (a) Standalone, (b) 16 Parallel Containers.

is, a group of data writes may be a part of a stream, and each stream is identi!ed by a unique
streamID that can be assigned either by the operating system or by the corresponding application.
Identifying streamID that captures the lifetime of data is very important.

As discussed in the earlier works [39, 42], it is challenging to choose an appropriate layer of
instrumentation to accurately identify streamID that captures the lifetime of pages on SSDs. A
straightforward approach is to study the types of operations in the write path of an application
and assign streamID based on !le types [2, 15, 38]. For example, an application like Cassandra [31]
mainly consists of three di"erent types of operations in its write path—logging data to the com-
mit log, #ushing data from memtable to sstable, and performing background compaction. Thus,
depending upon such information from each application, we can modify applications like Cas-
sandra [31] to assign a di"erent streamID to commit logs, compressed metadata, sstable indices,
and sstable data. This approach results in reducing WAF up to 65% [2]. However, !rst, it is not
adaptable as this requires studying and individually modifying each application to make them ca-
pable of assigning streamIDs. Second, in data centers and virtualized cloud infrastructures where
multiple applications run simultaneously, the combined characteristics of the write path may vary
signi!cantly compared to that of each individual application.

On the distributed and parallel platforms, the details instrumented at higher levels of the
OS stack such as application layer, !le system, or container data volume may not correlate well
with the actual data layout on storage devices, especially when we have multiple instances of
di"erent applications running simultaneously in parallel using multiple storage devices. To fur-
ther analyze the above hypothesis, we instrument characteristics at three di"erent layers of I/O
stack, (1) application—by grouping data using the application-level information of SSTable levels
following the approach discussed in previous works such as VStream [37, 42], (2) virtual !le
system (VFS)—by grouping data according to the program context (PC) at VFS layer following
PCStream [25], and (3) block layer—by grouping data according to the characteristics observed
by analyzing logical block addresses as done in AutoStream [39]. We use the RocksDB database
with a YCSB workload of 10,000 records. We operated standalone instances and 16 simultaneous
instances, each running in a separate docker container. We choose two features that are most com-
monly used in all the prior works [25, 39, 42] as frequency also known as temperature and recency.
We rank the importance of the data according to frequency, recency, and both combined. Figure 2,
shows the Pearson correlation coe"cient (PCC) [9] of features with the data pages lifetime on
SSD. The closer the value is to 1 or −1, the more relevant it is to the data page lifetime. For this
experiment, we compute the lifetime of the data pages by performing post hoc analysis on the data
placements while replaying workload traces on the DiskSim simulator.
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Fig. 3. Block diagram of our FIOS framework.

Fig. 4. Feature matrix data structure.

From Figure 2, we see that for standalone deployment, the application level data co-relates
strongly with the data lifetime. However, while multiple instances of applications are running
in parallel, then the data instrumented at lower levels such as block layer strongly co-relates with
the data lifetime. This is because, while running parallel application containers, the farther layer
of instrumentation and decision making means higher chances of dependencies on design choices
used for the intermediate layer, which thus reduces the co-relation of the observations from in-
strumented data to the lifetime of data stored on SSDs. As a result, the prior techniques such as
“VStream,” “Optimizing NoSQL DB on !ash,” “PCStream,” and “AutoStream,” that are tightly cou-
pled with higher layers of the host to identify streamIDs, are not much useful in heterogeneous
parallel platforms. From Figure 2, we also see that the correlation to the data lifetime while using
information from multiple features can be higher than just using individual features. Thus, moti-
vated by the two major abovementioned observations, we propose a new feature-based approach
that strives to determine and assign streamID at block layer, based on the best combination of
multiple features.

3 FRAMEWORK DESIGN
In this section, we explain the design and the main components of our framework.

3.1 FIOS Design
The block diagram of our FIOS technique is shown in Figure 3, which consists of two main phases:
training and testing. The training phase is the pre-processing step for streamID detection, which
needs to be performed only once. The testing phase represents the actual runtime phase of ap-
plications, during which streamID assignment is performed. Training and testing phases are both
performed in a cyclic pattern to capture the runtime workload changes. To better understand how
FIOS operates, we give an example of single cycle of these two phases. FIOS "rst uses blktrace and
blkparse commands to obtain a real I/O block trace from the application platform as a training
trace. This trace is then used by the training phase to extract the required features such as fre-
quency, adjacent access, sequentiality, and coherency. Later, we describe the details of how each
feature is extracted from an I/O trace in Section 3.2.

The captured features are enclosed in the form of a feature matrix, such as the one shown in
Figure 4. Accordingly, the feature matrix consists of n ×m cells, where m is the number of fea-
tures analyzed for streamID detection, and n is the total number of sector_chunks in the storage
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volume. The storage volume may include a single SSD or multiple SSDs. Each sector_chunk com-
prises of several sectors. The sector_chunks in rows are arranged in an incremental numerological
order such that the product of row number and each sector_chunk’s size gives the sector_chunk
address. Each cell in the feature matrix gives data quanta, which re!ects the importance of the ith
sector_chunk with respect to the jth feature. Notice that if a sector_chunk consists of only a single
block address, then that sector_chunk would be the same as a logical block address (LBA). Thus,
we use sector_chunk and logical block address interchangeably in this article.

Through feature extraction, FIOS creates a feature matrix, which is then used for clustering
write/update sector_chunks into di"erent streams. To obtain high computational e#ciency, we
improved a multi-threaded K-means clustering algorithm [10] to cluster sector_chunks into K
streams in parallel. In particular, each feature makes one dimension of clustering inputs, and a
relative weight factor can be used as an optional input to emphasize the relative importance of
each feature in deciding streamIDs. By default, all features are considered to be equally important
with the same weights. The number of clusters (i.e., K ) of the K-means algorithm maps to the
number of streams supported by the SSD drive (e.g., 16 streams in the latest SSD drives). FIOS
uses the K-means algorithm to group all data points in the feature matrix into the given number
of streams. The clustering results are stored in the LBA-StreamID dictionary that consists of the
pairs of sector_chunks and streamIDs.

In the testing phase, we have actual I/O operations (e.g., writes/updates) performed on storage
devices. For a read, the operation of legacy and multi-stream SSDs remains the same. For a write or
an update, a multi-stream SSD allows multiple append points. Thus, to decide data placement on
a multi-stream SSD, FIOS assigns a streamID to each sector_chunk through a quick lookup in the
LBA-StreamID dictionary. Thereafter, the assigned streamID is penetrated through the I/O stack
until the data is actually written to the physical address space of that streamID. For an erase, both
legacy and multi-stream SSDs work in the same way by searching all $nalized blocks for a GC
candidate and then copying out valid pages from the candidate.

3.2 Feature Extraction
Now, we turn to present how FIOS extracts workload features from the collected I/O traces and
completes a feature matrix. As introduced above, the feature matrix comprises of the importance
factor for each sector_chunk with respect to di"erent features. In order to keep low instrumenta-
tion overhead, we decide to represent the importance factor for a sector_chunk as a binary datum.
Each entry (i ,j) in the feature matrix can then be represented by a single binary bit (e.g., 1 or 0)
that indicates whether jth feature is considered to be important (“1”) or not (“0”). We use a vector
−→
δ , to contain the thresholds for each feature, as criteria to determine the values (i.e., 0 or 1) for
each entry.

For instance, the feature of frequency indicates how often a particular sector_chunk is accessed.
If the number of accesses of that sector_chunk is greater than the prede$ned threshold (e.g.,
δ[f requency] = 4 times), then the frequency entry of that particular address is set as 1, otherwise
0. We set δ[f requency] to the median value of the frequencies of sector_chunks, assuming that
the frequencies of sector_chunks follow a Gaussian distribution. The feature of the adjacent access
indicates that sector_chunks that are adjacently accessed during a time window are more likely
to be accessed together again. We set δ[adjacent_access] to construct multiple groups according
to the access time of sector_chunks. We can also have the feature of sequentiality to capture if an
incoming I/O access is sequential to the previous one. We calibrate the threshold vector using an
ensemble of piecewise linear regression models [33].
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Fig. 5. Decimal fraction feature matrix.

3.3 Binary to Decimal Extension of Algorithm
As explained above, one of the limitations of FIOS is that it is a binary model. The binary version
of FIOS only considers a single binary bit as an importance factor for each feature. This may eas-
ily become a limitation to capture complex workloads. For simple features like sequentiality, it
is straightforward that any sector_chunks can either be sequential or not. However, for more ad-
vanced features like coherency, a particular sector_chunk may be more coherent with some groups
than others. In order to capture such various levels of similarities, we extend FIOS to consider the
decimal feature matrix instead of binary. The decimal extension gives a better resolution to the fea-
ture matrix. We choose decimal over hexadecimal just because the number with base ten is well
understood and can be easily represented as percentages. It is important to note that the number
of partitions to separate data into di!erent streams for multi-stream SSD is not limited to 2 for
binary and 10 for the decimal extension. But, being independent on the resolution of the feature
matrix, FIOS as explained in Section 3.1 can be used to construct a dictionary with any number of
streams supported by multi-stream SSDs.

Mainly, we modify our feature extraction technique to label all sector_chunks with a decimal
between 0 and 1 that indicates internal grouping with respect to each feature. Figure 5 shows an ex-
ample of the feature matrix with decimal fractions. Particularly, for features, such as frequency and
adjacent_access, we set the threshold (δ ) as a stepwise function. This stepwise function partitions
the sector_chunks into ten di!erent categories. The feature of sequentiality is straightforward
and binary in nature, so it remains the same. Finally, while extracting coherency, we maintain a
counter to obtain the number of friendly groups of each sector chunk. Then, we perform linear
range shifting to obtain a value of coherency feature between 0 and 1 for all sector_chunks.

Once the decimal feature matrix is generated, the K-means algorithm is run to cluster features
to build a dictionary. After that, during the runtime for the testing phase, the operation remains
the same as in the case of a binary algorithm. It is interesting to analyze the endurance gain and
additional overhead introduced by generating such a decimal feature matrix when compared to its
binary counterpart. We next present our evaluation using the decimal feature matrix. We integrate
the binary and decimal feature matrix as a plugin with our FIOS framework that allows user you
change easily upon restart. Also, note that changing feature extraction from binary to decimal and
vice-versa upon reboot will not impend any operation on existing data as the only data we persist
from prior mode is Dictionary and its format remains the same for both binary and decimal feature
extraction.

3.4 Coherency
Unfortunately, we observe that existing well-known features like frequency and sequentiality are
not su"cient to capture the lifetime of data when using them individually. We thus propose a
new feature, named Coherency, to capture the friendship between sector_chunks. Coherency can
be more closely related to the lifetime of data. We refer to two addresses (i.e., sector_chunks) as
friends if we observe that they are mostly updated together in multiple time windows. Intuitively,
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Fig. 6. A sampling graph for describing a novel feature of coherency.

grouping coherent addresses in the same stream can be bene!cial because all sector_chunks in
that stream will have a similar update pattern.

Figure 6 illustrates the general idea of the coherency feature, where the x-axis corresponds to
time windows, and the y-axis corresponds to LBAs or sector_chunks. If a particular group of LBAs
are mostly updated together in multiple time windows, then these LBAs may be referred to as being
coherent with each other. For example, if we snoop at a speci!c time interval, which is shown by
a vertical dashed line in Figure 6, we can say that LBA2 and LBA3 are coherent because they are
concurrently updated in three of the four-time windows, i.e., T1, T2, and T4. This indicates that
these two sector_chunks (i.e., LBA2 and LBA3) have a tendency to be updated at the same time,
such that grouping them together into a single stream can help to reduce WAF.

In particular, we maintain lists of unique sector_chunks that have been accessed in each time
window. We compare the list of each time window to identify the common sector_chunks that
appear in at least two lists. We then mark these common sector_chunks as coherent (i.e., 1). The
process is !nished when all unique sector_chunks of every time window are allocated their co-
herency values. In our current model, because we consider the datum of our feature matrix as
either 0 or 1, it is a limitation that we cannot di"erentiate di"erent groups of friends while cap-
turing coherency. As of now, our model only partitions sector_chuncks into two groups, i.e., one
consisting of LBAs which are “friendly to somebody” and the other consisting of LBAs, which are
“friendly to nobody.”

Additionally, as many of our workloads and !le systems are append-only, it is interesting to
understand how coherency can be useful for them. The SSD address space is !xed depending upon
the capacity of the SSD. So, eventually, after SSD reaches its steady-state, even if the workload is
append-only, physical pages in that SSD that stores “friendly” LBAs according to our feature of
coherency will be invalidated at nearly the same time. It is also important to clarify that even
though an append-only application maintains a never-ending log, this log is eventually mapped
to the !nite LBA space. Updates to a set of “friendly” LBAs are not necessarily caused by the
updates of the same application data. Although we do not perform in-place updates for append-
only workloads, but rather perform compaction such as for levels in RockDB. We want to claim that
because of data mappings done at the intermediate operating system layers (such as !le system)
and SSD-related management policies (e.g., FTL mapping, wear-leveling, garbage collection), a
group of sector chunks can be recurrently accessed together. The coherency feature we consider
and instrument at the block layer aims at capturing the relationship of these sector chunks.

Regarding the bursty and not heavy writes, there are some di"erent scenarios. First, if there
are very sparse and eventual writes that have arriving intervals considerably longer than the time
interval we compute coherency, then we label these sparse writes as “coherent to nobody”. Second,
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Table 1. Summary of the Relation between Features and Workload
Characteristics

Feature ACF RW R S λ

Adjacent Access (A) High - - - High
Coherency (C) High High - - -

Sequentiality (S) - - - High -
Frequency (F) - - High - -

(ACF - Auto-Correlation of Inter-arrival Time, RW -Random Write Ratio, R -
Reuse Ratio, S - Estimated Size of each Writes in KB, λ - Write Rate in GB/Day).

if these writes are sparse but have intervals shorter than the time interval we compute coherency,
then we mark these sector chunks as coherent because they are updated together even though
their tra!c is not heavy. On the other hand, if writes are bursty but these simultaneously accessed
sector chunks are not re-accessed together later, then the proportion of coherent sector chunks
will remain small.

3.5 Combination of Multiple Features
As we discussed, an I/O workload has di"erent features, such as frequency, coherency, and so on.
How to use one or multiple features to cluster data points into the desired number of streams
is not trivial. We found that using multiple features might give better performance than using a
single feature. However, we also found that using unsuitable features to assign streamIDs may
not be able to help to improve the performance and even may cause performance degradation.
Thus, a critical issue is how to #nd out an optimal combination of features that can enable FIOS to
achieve the high quality of streamID packetization with the minimum overhead. Given n features,
we can have 2n−1 possible combinations. We investigate and evaluate the impacts of these feature
combinations on the write ampli#cation of multi-stream SSDs in Section 6.1.

In summary, our results indicate that (1) none of the features (such as frequency, adjacent access,
sequentiality, and coherency) can be claimed as the best for all I/O workloads, (2) di"erent features
have varying impacts on WAF, and (3) the bene#t derived by using the combination of multiple
features is not additive. Therefore, a big challenge in developing this multi-stream framework is
how to determine a combination of workload features that are best for assigning appropriate streamIDs
under a given I/O workload. Investigating the results for many workloads, we further propose a new
approach to determine a good feature combination.

3.6 Automatic Feature Selection
To address the above issue, we build an analytical correlation model to capture the co-relation
between easily obtained workload characteristics, such as I/O size (S), random write ratio (RW),
reuse ratio (R), and autocorrelation (ACF) of write rates) with high-level workload features
(such as frequency and coherency) and identify a good set (or combination) of features suitable
to a workload for streamID identi#cation. Our goal is to obtain such a good feature combination
automatically, rather than experimenting with all possible combinations.

The initial step in our approach is to determine the workload characteristics that can mainly
a"ect the selection of features. Table 1 summarizes the implications that we develop regarding the
relationship between workload characteristics and features used for streamID identi#cation. For
example, as shown in the #rst row of the Table 1, if a workload has high ACF and high λ, then
adjacent access (A) is one of the good features to select.
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Fig. 7. Bit mapping log of base matrix B.

Based on the information in Table 1, we construct a base matrix B as shown in Figure 7, where
“1” corresponds to the “High” impact in Table 1 and “0” corresponds to the “Low” impact. In B,
some features (e.g., sequentiality (S) and frequency (F)) need to have 2 rows each. For example,
no matter ACF of inter-arrival time is high or low, the feature of frequency is a good choice as long
as the R is high. If we can map a workload’s characteristics to a row in the base matrix, then we can
choose the corresponding feature. However, we notice that the characteristics of a workload may
not exactly map to one of the 6 possible rows of base matrix B, and thus it is not straightforward to
determine the best combination of features. Given this, we have the following problem objective
and solutions.

Objective: Assume a map function fmap which determines the best possible combination of
features (−→ψ → F ,A, S,C) based on the workload characteristics (−→θ → ACF ,RW ,R, S, λ), i.e.,

−→
ψ = fmap (

−→
θ ). (1)

Thus, our objective is to determine the above de!ned function fmap .
Solution: The attribute vector−→θ is constructed based on users input of workload characteristics,

where an attribute is assigned 1 if the given workload exhibits such a characteristic. For instance,
after analyzing a given workload’s characteristics (consider MSR-prn0), we can get its attribute
vector as −→θ as [1 1 0 0 1]. It represents that MSR-prn0 has high ACF , RW , and λ, and low
R and S . If the attribute vector −→θ is given by the user has “0” for a particular attribute, then any
feature that has a high impact of this attribute is de!nitely not a good candidate. For example, for
the above considered −→θ , attributes such as R and I/O S are “0”. Thus, the features of sequentiality
and frequency which have a high impact on I/O size and reuse ratio (as seen from Figure 7) are
not good candidates. We construct the factorization vector −→α that indicates the above information
of whether or not each row in base matrix B is a good candidate for given −→θ . Such a factorization
vector −→α can be represented as below,

−→α = [α1, α2, α3, α4, α5, α6]T , (2)
where αi ∈ {0, 1}. If αi is 0, then the ith row of base matrix B is not a good candidate and vise-verse.
Moreover, as atleast one of the features must be selected, we have ∑6

i=1 αi > 0. Thus, we obtain
α by the following elimination on base (B) with respect to careful examination of input attribute
vector −→θ . This elimination is represented by a factorization function ff act as,

−→α = ff act (
−→
θ ). (3)

Finally, the function fmap can be expressed by some other function f −1
der iv . Function f −1

der iv is
just the replacement of fmap such that fmap (

−→
θ ) = f −1

der iv (
−→
θ ) ∀−→θ . This is done to make the

rest of the process easier. Further, f −1
der iv (

−→
θ ) gives all possible combinations of the rows of base
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ALGORITHM 1: Workload_Run_Daemon (WRD)
Parameter:TRunW indow , TT r ainW indow
Initialize :TimeStamp = 0,

Workload_Set[W1,W2, . . . ,Wn],
curr → BD = NULL,
curr → SID = NULL,−→
W −→

θ
= [W

1−→θ ,W
2−→θ , . . . ,Wn

−→
θ

],
−→
W −→

ψ
= fmapF eat (

−→
W −→

θ
)

Input: Sector_Chunk
Result: StreamID

1: while TimeStamp < Workload_Time do
2: while curr → time mod TRunW indow == 0 do
3: start_time ← curr → time

4: curr →W ∈ −−−−−−−−−−−−−→Workload_Set
5: setW−→

θ
← −→W −→

θ
[curr →W ]

6: setW−→
ψ
← fmapF eat (W−→

θ
)

7: while 0 ! (TT r ainW indow − start_time )

TT r ainW indow
! 1 do

8: SID ←WTD(W−→
ψ
, TT r ainW indow )

9: if SID ! ∅ then
10: StreamID ← hash_дet (SID (Sector_Chunck ))
11: else
12: curr → time = TimeStamp + +

B for which elements in −→α is equal to 1, i.e., (−→θ = fder iv (
∨6

i=0 (−→αi × Bi )). We solve equation −→θ =
fder iv (

∨6
i=0 (−→αi × Bi ) for the only unknown “fder iv ” in it. Recall that the attribute vector −→θ is

constructed based on users input of workload characteristics, where an attribute is assigned 1
if the given workload exhibits such a characteristic. We construct the factorization vector −→α that
indicates the above information of whether or not each row in base matrixB (i.e., shown in Figure 7)
is a good candidate for given −→θ . Finally, in the last step just by computing the inverse of this
function fder iv , we can achieve our objective of !ndingψ as f −1

der iv (θ ) = fmap
−→
( θ ) = −→ψ .

3.7 OFIOS: Online FIOS
The workloads being executed in data centers change over time. Also, in a virtual machine and con-
tainerized environment, the number of active instances of the workloads varies. In order to predict
the best feature combinations and maintain a dictionary that automatically adapts to the chang-
ing workloads, we design and develop the Online FIOS (OFIOS) technique. To dynamically adapt
the dictionary constructed using FIOS, we run two parallel bunches of processes. One bunch of
processes undertake the operations of FIOS as explained in Sections 3, 4, and 3.3. To manage these
processes, we design a new Workload_Run_Daemon (WRD) and implement it using systemd [3].
Algorithm 1 describes the runtime process of OFIOS. Upon a write/update to any particular sec-
tor_chunk, WRD performs a lookup in the Simplified Index Dictionary (SID) as explained in
Section 4 and returns the StreamID to place that data on the "ash-based storage. To initialize, we
capture the characteristics (θ ) of di#erent workloads and multiple instances of parallel workloads
(i.e.,W1,W2, . . . ,Wn ) into the feature matrixψ as described in Sections 3 and 3.3. During the work-
load execution, within the current time window TRunW indow , the latest patch of SID with respect
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ALGORITHM 2: Workload_Training_Daemon (WTD)
Initialize: TimeStamp = 0
Input:W−→

ψ
,TT r aceW indow ,TT r ainW indow

Result: SID
1: while TimeStamp < TT r aceW indow do
2: label_blk ← random_samplinд[/dev/disk]
3: trace_exe ← blktrace[label_blk]
4: set TrainTrace ← blkparse[trace_exe]
5: TimeStamp + +
6: while TimeStamp < TT r ainW indow do
7: set BD ← Run FIOS on TrainTrace with featureW−→

ψ
8: hashset SID ← Reduction(BD)
9: Update curr → BD = BD

10: Update curr → SID = SID

to that of the last time window is pulled from the Workload_Training_Daemon (WTD) (WTD is
explained next). Finally, OFIOS looks up SID for the StreamID of any particular sector chunk.

The second set of processes operates simultaneously in the background during the operation
of WRD by the !rst set of processes. The processes in this second set use non-blocking I/Os [13] to
construct a new dictionary. This dictionary under construction ensures to incorporate the recent
and ongoing changes in the workloads and their active instances. Our WTD manages the second set
of processes. Algorithm 2 describes the operations of WTD. For each time window (TT r ainW indow ),
WTD takes the input of the feature matrix (W−→

ψ
) generated in the last window and produces a new

SID. In the !rstTT r ainW indow time period of each window which is TT r aceW indow long, we do the
random sampling of LBAs from the storage address space. Then, we run blktrace and blkparse
to instrument the characteristics of the running workload as TrainTrace . Finally, we run FIOS
with TrainTrace and W−→

ψ
to update the dictionary, which is used to assign streamID in the WRD

launched after that. We evaluate OFIOS and compare our performance with the state-of-the-art
existing techniques in Section 6.4.

4 MAIN ARCHITECTURE
In this section, we present the I/O stack architecture overview of our FIOS implementation and
introduce the basic data structures used in the implementation. Following that, we discuss the
modi!cations on an existing SSD simulator, i.e., Disksim [7] to enable the multi-stream interface.

4.1 FIOS: Architecture Overview
Our prototype of FIOS can be implemented at any levels, such as the !le system layer on the
host side or the FTL layer inside the device. In our implementation, we choose to deploy our
prototype at the block layer. Later in Section 7, we will discuss the bene!ts of this design choice.
Figure 8 shows the I/O stack of FIOS architecture, which consists of two main components to
assist in streamID assignment, i.e., (1) Base Dictionary (BD) and (2) SID. As shown in Figure 8,
BD is persisted in "ash memory and SID is stored within the memory management subsystem in
DRAM. On a system failure like a power outage, SID can be rebuilt from BD on rebooting. At the
software level, host applications may run directly in the system, or containers like Docker and
LxC. The application layer performs read and write I/Os, which are passed to the underlying !le
system and "ash memory through system calls. For every I/O write or update, a lookup operation is
performed to SID by calling hash_get to get streamID for the corresponding block addresses. The
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Fig. 8. The I/O stack of FIOS architecture.

obtained streamID is piggybacked on a reserved !eld of regular and queued write commands as
speci!ed in the ATA command set. Along with every write operation, the corresponding streamID
is penetrated through all the below layers until that I/O is written or updated on the SSD.

4.2 Basic Data Structures
Base Dictionary: The BD is the result of the training phase (see Figure 3) of our FIOS, which

contains the mapping between streamIDs and sector_chunks. Recall that there are 64 sectors in one
sector_chunk. Each sector_chunk has a streamID, as metadata associated with it, which is stored in
BD on "ash memory. Such a metadata uses 0.5 bytes to keep the streamID. In our implementation,
we consider a logical volume of "ash of a 3 TB, which is stripped over the physical volume of three
1 TB SSDs. Thus, for 3 TB "ash volume, we require less than 50 MB in total to store all streamID
metadata, which is only 0.001% of total "ash disk space.

Simpli!ed Index Dictionary: The SID is used to perform a lookup for streamIDs at run time
(i.e., the testing phase). SID is the compressed version of BD, where we reduce the size of base
dictionary by combining all consecutive sector_chunks that have the same streamID and replacing
multiple lines with one line. Following that, instead of sector_chunk number, we have the range
of sector chunks for each row in SID. We can then store SID in DRAM memory for fast hash_get
lookup. We observe that SID is 50% more e#cient in terms of space when compared to BD. Once
SID is created and stored, we can move BD to the back-end storage until we have a new dictionary
from another round of the training phase. In our experiments, we have 128 GB DRAM in the server.
The SID footprint for di$erent workloads consumes less than 25 MB of main memory. Therefore,
the SID footprint overhead is only about 0.02% of the size of the main memory.

4.3 Multi-stream SSD Architecture
In an SSD, a single "ash internal consists of multiple connected dies through a serial I/O bus
and common control signals. Each die has its own chip enable and ready/busy signals. Thus,
one of the dies can accept commands and data while the others are carrying out other opera-
tions. Furthermore, a die consists of multiple planes, and each plane is framed by multiple blocks
containing pages where data is actually stored. Additionally, each plane has some register space to
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Fig. 9. Modification to garbage collection in order to enable multi-stream.

store data allocation and each block has one page reserved for metadata. We implement our FIOS
in DiskSim’s SSDSim plugin [7], which has been widely used to simulate SSDs. However, DiskSim
does not support the multi-streaming technology. Thus, we modi!ed this existing SSD simulator
to allow us to simulate multi-stream SSDs and evaluate our new FIOS method. The overhead of
our implementation will be discussed in Section 7.

In particular, we mainly modify two modules, i.e., ssd_init and ssd_clean. The ssd_init
module is modi!ed to maintain a streamID attached to the hierarchy of active_page, active_block,
and active_plane. We ensure that for all dies, the total number of active_planes is always equal
to the number of streams. Each active_plane has only one active_block and each active_block has
only one active_page. Thus, the main di"erence between a legacy SSD and a multi-stream SSD is
that we have multiple simultaneous open erase blocks (one for each stream) in the multi-stream
SSD, but only a single open erase block in the legacy SSD.

If all pages in active_block are !lled, then block_alloc_pos will take care of assigning a new
block, which then becomes active_block with the same streamID as the previous active_block.
Blocks are not pre-allocated to each stream. Instead, they are allocated on-demand to each stream
after the previous one of the same stream is !nalized. In Disksim, the ssd_clean module performs
GC, which is a global component and not aware of the streams. Thus, when garbage collection
starts, ssd_clean should search all the blocks to !nd one or multiple candidates to clean. On the
other hand, there are still blocks with some valid pages whose streamIDs need to be preserved. The
modi!ed ssd_clean module of Disksim thus assigns these pages to a new physical plane that is
ensured to belong to the preserved streamID. Figure 9 illustrates how the modi!ed DiskSim works
for supporting multi-streaming when garbage collection happens.

5 PLATFORM SETUP
Our evaluation environment of Disksim is calibrated based on the real testbed specs, summarized
in Table 2. We adopt the similar #ash volume structure developed in our previous work [11], which
consists of a logical volume of 3 TB with full stripping of 128 KB. We con!gure the parameter
!le of DiskSim [7] to support the On-Stack Replacement (OSR) write policy [30] and the wear-
aware garbage collection cleaning policy [27]. We modify the SSDSim module of DiskSim to enable
simulating operations of multi-stream SSDs to validate our results. To calibrate DiskSim, we use
the prototype of multi-stream SSDs made by using Samsung’s NVMe PM953 SSD with M.2 form
factor. The Ubuntu kernel patches to use this multi-stream SSD prototype is available at https:
//github.com/multi-stream/multi-stream. Here, we set 64 sectors on a disk (i.e., 64 × 512 Bytes on
SSDs) as one sector_chunk by default for most of our experiments considering the empirically
observed sensitivity towards storage overhead of streamID computation.
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Table 2. Testbed Specs

CPU Type Intel(R) Xeon(R) CPU E5-2640 v3
CPU Speed 2.60 GHz

Number of CPU Cores 32 Hyper-Threaded
CPU Cache Size 20480 KB
CPU Memory 128 GB

OS Type Linux
Kernel Version 4.2.0-37-Generic

Operating System Ubuntu 16.04 LTS
File System ext4

Flash Storage 960 GB
Page Size 8 KB

Pages Per Block 64
Blocks Per Plane 351,562
Planes Per Die 8

Dies Per Element 2
Elements Per Gang 1

Flash Over-Provisioning 11%
Metadata Storage Reservation 1 Page Per Block

We conduct a trace-replay simulation in modi!ed DiskSim by using 100+ enterprise work-
loads from theUniversity of Massachusetts (UMass) [4], Microsoft Research—Cambridge
(MSR) [34], and Florida International University (FIU) [5] trace repositories. We use Linux
default !le system ext4, which is a journaling !le system. We understand that using di"erent !le
systems may yield di"erent performance, but this is outside the scope of this work. We analyze
the performance using a wide variety of workloads with di"erent characteristics. Table 3 shows
some workload characteristics of the selected workloads. Brief descriptions about workload char-
acteristics shown in Table 3 are as follows,

— ACF—the auto-correlation factor of inter-arrival time between two write/update requests;
— RW—the percentage of random writes among the total write I/Os;
— S—the estimated average size of each write;
—WV—the working volume that represents the spatial capacity demand;
— R—the reuse ratio of the total amount of data (in bytes) accessed in the disk (i.e., WV) to

the total address range (in bytes) of accessed data, which is the unique set of WV. A large R
ensures that there is some unique data that is reused heavily;

— λ—the daily logical write rate (GB/day);
— Peak rate—the peak throughput demand with the 5 minutes statistical analyses window;
— Throughput—the overall operation rate.

The primary goal of multi-streaming technology is to provide better data placement which can
reduce the extra writes during garbage collection. Thus, the major evaluation metric is WAF, which
is the ratio of physical writes (in bytes) on a device to logical writes (in bytes) by applications
running on a host. The lower the WAF is, the better the lifetime and performance of the #ash
device are.

To evaluate our OFIOS, we setup a total of eight parallel docker containers to simultaneously
execute four di"erent SQL and NoSQL database applications—MySQL, Cassandra, RocksDB, and
MongoDB for 1 hour. We have two containers for each application. Each database application
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Table 3. Statistics for Postmark, IOzone and Selected FIU, MSR-Cambridge and UMASS Workloads

Workload ACF RW R S WV λ Peak rate Throughput
(%) (KB) (KB) (GB/Day) (IOPS) (IOPS)

Postmark 0.99 98.29 37.61 26 10244024 43.87 112.32 18.45
IOzone 0.98 49.45 1.21 197 5094328 28.08 109.53 14.08
FIU-1 0.78 75 157.35 9 1065000000 139.4 271.65 6.6
FIU-2 0.87 82 32.89 8 1084000000 114.72 156.79 1.02
FIU-3 0.97 57 182.04 8 1084000000 185.09 207.02 2
MSR-hm0 0.92 66 4.48 15 28000000 58.51 254.55 9.24
MSR-hm1 0.95 58 157.37 31 51000000 1.57 156.13 6.98
MSR-mds0 0.98 69 32.47 19 67000000 21.04 298.33 23.38
MSR-prn0 0.98 61 4.72 25 132000000 131.33 409.66 17.72
MSR-proj0 1 27 6.27 29 32000000 412.19 484.82 28.95
UMASS-1 0.21 64 1242.93 8 1289000000 575.94 218.59 122.05
UMASS-2 0.02 76 1.13 5 1156000 76.6 159.94 90.25

(ACF - Auto-Correlation of Inter-arrival Time, RW - Random Write, R - Reuse Ratio, S - Estimated Size of each Write,
WV - Working Volume Size, λ - Write Rate, BFC - Best Feature Combination).

Table 4. Workload Configurations of Di!erent Real Applications (KV - key/value, col. - columns, conn. -
connections, R - reads, W - writes, U - updates, Bench. - benchmark, W1 to W6 - workloads)

Application Bench. Size W1 W2 W3 W4 W5 W6
MySQL-1 TPCC 4200 100 200 300 400 500 600

warehouse conn. conn. conn. conn. conn. conn.
MySQL-2 TPCC 200 1000 2000 3000 4000 5000 6000

warehouse conn. conn. conn. conn. conn. conn.
Cassandra-1 Cassandra 10 million R/W R/W R/W R/W R/W R/W

stress records 70%/30% 60%/40% 50%/50% 40%/60% 30%/70% 20%/80%
Cassandra-2 Cassandra 1 million R/W R/W R/W R/W R/W R/W

stress records 80%/20% 70%/30% 60%/40% 50%/50% 40%/60% 30%/70%
RocksDB-1 DB_bench 560 million U/R U/R U/R U/R U/R U/R

records 50%/50% 60%/40% 70%/30% 80%/20% 90%/10% 100%/0%
RocksDB-2 DB_bench 10 million U/R U/R U/R U/R U/R U/R

records 100%/0% 90%/10% 80%/20% 70%/30% 60%/40% 50%/50%
MongoDB-1 YCSB 220 million U/R U/R U/R U/R U/R U/R

records 50%/50% 60%/40% 70%/30% 80%/20% 90%/10% 100%/0%
MongoDB-2 YCSB 10 million U/R U/R U/R U/R U/R U/R

records 100%/0% 90%/10% 80%/20% 70%/30% 60%/40% 50%/50%

runs 6 di!erent streams of workloads. Each workload runs for 10 minutes. Table 4 shows the
con"guration of our 8 containers and 6 workloads of each container.

6 EVALUATION
In this section, we "rst study the impact of streamID identi"cation using di!erent features, such
as frequency, sequentiality, on the WAF of multi-stream SSDs, and overall throughput of work-
loads. Then, we analyze characteristics of di!erent workloads and derive some implications for
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determining which feature or a combination of features can obtain the minimum WAF for a given
workload. Then, we validate the FIOS automatic feature selection model to determine the best fea-
tures for streamID identi!cation. We also evaluate the performance impact of FIOS on the overall
throughput of applications, and the sensitivity of FIOS with di"erent sector chunk sizes. Finally,
we discuss our evaluations of OFIOS, by comparing its performance with the state-of-the-art tech-
niques. We also analyze the sensitivity of OFIOS to its variable parameters.

6.1 Impacts of Workload Features
We inspect the impact of streamID identi!cation using di"erent features on the WAF. The baseline
of our comparison is the WAF of no streaming legacy SSDs with the same capacity and con!gura-
tions. We also compare the results of our feature-based streamID identi!cation with one straight-
forward way of partitioning data into di"erent streams. In this straightforward approach, the total
address space of SSDs is equally partitioned into the number of supported streams, and streamID
is assigned according to I/O address.

As discussed in Section 3, our FIOS framework extracts various workload features and considers
di"erent feature combinations to cluster logical blocks into streams. Figure 10 shows the results
of relative WAFs normalized by the WAF of no streaming legacy SSD for binary feature matrix.
Later in Section 3.3, we discuss our advancement regarding the decimal feature matrix. The blue
horizontal line at 1 represents the relative WAF of legacy. Thus, the smaller the relative WAF is,
the better the endurance of multi-stream SSDs can be obtained. Speci!cally, 15 bars represent
some possible feature combinations used by FIOS. For example, FSAC stands for a combination of
Frequency, Sequentiality, Adjacent access, and Coherency.

We conduct our experiments with a totally of 100+ workloads and summarize our observations
with 12 representative workloads in Figure 10. Overall, we observe that the multi-streaming tech-
nology o"ers a good opportunity to reduce WAF, e.g., at least a 20% reduction in WAF for all
workloads. For some write-intensive workloads e.g., Postmark (see Figure 10(a)) that have the ma-
jority of random writes, the WAF can be reduced by more than 70%. On the other hand, we also
notice that none of these features can be always the best for di"erent types of applications. For
example, Coherency gives the best WAF reduction for MSR-hm0 (see Figure 10(f)), while a combi-
nation of Frequency and Coherency (FC) is much better for MSR-hm1 (see Figure 10(g)). This
is because di"erent workloads have di"erent characteristics. For example, by looking closely to
the workloads we !nd that both MSR-hm0 and MSR-hm1 have more random writes and a high
auto-correlation (i.e., ACF) of update time, see Table 3. As a result, the feature of coherency that
groups randomly occurred friendly sector_chunks into the same stream becomes a good choice.
Additionally, MSR-hm1 has a high reuse ratio of updates. Thus, combining features of frequency
can capture the multi-touch reuse count. Moreover, from Figure 10(g), we also !nd that further
adding other features (e.g., sequentiality), FSC does not further reduce the WAF, which implies
that the combination of more features does not guarantee a better reduction in WAF.

Furthermore, Figure 10 shows the results of relative WAFs normalized by the WAF of no stream-
ing legacy SSD using the decimal feature matrix when compared with the binary feature matrix.
Overall, we observe that for di"erent workloads, the WAF is reduced by using the decimal fea-
ture matrix when compared to the binary feature matrix (see Figure 10). This is because, with
the decimal feature matrix, we can capture granular properties to cluster data more accurately
into streams. Furthermore, we also notice that the best feature combination with which we ob-
tain the maximum WAF reduction for a workload remains the same irrespective of the granularity
of the feature matrix. For example, Coherency gives the best WAF reduction for MSR-hm0 with
both the binary and decimal feature matrices. This validates that the best feature combination is
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Fig. 10. Relative WAF w.r.t. a legacy device for Postmark, IOzone and selected FIU, MSR-Cambridge, and
UMASS workloads by using our framework with dictionary framed from di!erent features and their combi-
nations for streamID identification. (F - Frequency, S - Sequentiality, A - Adjacent access).

closely related to workload characteristics, and we can accurately predict the best feature combi-
nation by understanding the relation between features and workload characteristics.

6.2 Validation of Feature Selection by FIOS
Now, we turn to validate our approach for a given workload choosing the best combination of
features under various workloads. We use WAF as the metric to evaluate our FIOS under six
di!erent I/O workloads, as shown in Figure 11. The best feature combination derived by FIOS are
also mentioned on the top of the FIOS bars in Figure 11. For comparison, we plot the results of
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Fig. 11. Write amplification factor using the best feature selected using FIOS when compared to legacy no
streaming, streamID identification with equal partition, and with a usually used feature of frequency. The
best feature selected by FIOS is mentioned on top of the bar for each workload.

Fig. 12. Throughput of workloads using the binary feature matrix and the decimal feature matrix for nor-
malized to throughput obtained using non-streaming legacy SSD.

legacy and multi-stream SSDs under the !xed feature (e.g., frequency) selection approaches. These
results imply that the existing methods that use the !xed features (such as frequency) for streamID
assignment cannot e"ectively utilize the bene!ts of multi-stream SSDs. In contrast, for all these
workloads FIOS is able to obtain the lowest WAF by using appropriate features for streamID
assignment.

6.3 Performance and Sensitivity of FIOS
Furthermore, for the best feature combination, we compare the workload throughput of multi-
stream SSDs with non-streaming SSDs, while using the binary feature matrix and the decimal fea-
ture matrix in Figure 12. We observe that by using a multi-stream SSD with accurate data streams,
the throughput of workloads is improved by at least 1.17 times when compared with a legacy SSD
with no streaming capability. This is because by better organizing the data within SSDs, the over-
head for internal operations such as GC is reduced, and hence more device bandwidth becomes
available for the application data. We also see that the throughput of using the binary feature ma-
trix is better when compared to the decimal feature matrix. This is because computing the decimal
feature matrix for each feature requires more time, as it is more complicated than the binary fea-
ture matrix. Thus, using the decimal feature matrix instead gives better endurance, but consumes
some additional performance overhead. However, the overall throughput using the decimal fea-
ture matrix still remains better when compared to the legacy SSD. In summary, our results show
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Fig. 13. Sensitivity analysis by changing sector chunk size (a) MSR-mds0, (b) MSR-prn0, and (c) MSR-proj0.

that by allowing us to better organize the data within multi-stream SSDs, we can reduce WAF as well
as improve throughput.

Finally, in Figure 13, we observe the sensitivity of FIOS with di!erent sector chunk sizes. We see
that with a smaller sector chunk size, better (i.e., lower) WAF can be obtained. However, the rate
of the increase in WAF with the increase in the size of sector chunk is initially very low, but WAF
increases rapidly for sector chunks with larger sizes. Very small size of sector chunks (e.g., 512
bytes) will lead to high management overhead in terms of memory required to store dictionaries
as well as CPU cycles required to compute for many chunks. While, very large sector chunk size
(e.g., 1024 × 512 bytes) reduces the WAF reduction bene"t of FIOS. Therefore, after conducting
such empirical analysis on many di!erent workloads, we chose to set chunk size as 64 × 512 bytes
because for most of the workloads, we observed this is a knee point until which the rate of increase
of WAF with the increase in the sector chunk size is low and after that, it increases rapidly (see
Figure 13).

6.4 OFIOS Results
To evaluate our OFIOS, we setup a total of eight parallel docker containers to simultaneously ex-
ecute four di!erent SQL and NoSQL database applications as described earlier in Section 5. We
empirically con"gureTRunW indow andTT r ainW indow to have an equal length of 100 seconds for op-
timally capturing the dynamics of workloads. However, to reduce the overhead, depending upon
the number of cores in the system, the length of the TT r ainW indow can be reduced in OFIOS. The
length of theTT r aceW indow needs to be less than the length ofTT r ainW indow . Empirically observing
the time taken to construct new dictionaries by FIOS, we setTT r aceW indow as 75% ofTT r ainW indow .
Later, in Section 7 we will further explore the time consumed by FIOS to construct new dictionaries.

Figure 14 shows the runtime WAF under both FIOS and OFIOS, where the green line with a
circle marker shows the WAF observed using FIOS with Frequency as a feature and the red line
with a triangle marker shows the WAF observed using OFIOS. We can see that the overall WAF can
be further reduced by using OFIOS. As we know, FIOS cannot dynamically adapt the dictionary
during the runtime. For example, after the initial training in the "rst 100 seconds, Frequency is
identi"ed as the best feature and then used for the streamID assignment throughout the entire
execution time by FIOS. Whereas, OFIOS automatically adapts the dictionary during the runtime
of the workload. Thus, according to the workload, the best feature combination to assign streamIDs
is periodically adapted. In Figure 14, the feature combinations of OFIOS are shown along the x-axis
for every 100 seconds. We see that the adaptive OFIOS can further improve the endurance of SSDs.

Further, in Figure 15, we compare the performance of three existing techniques with OFIOS.
Figure 15(a) shows that the WAF of our scheme is reduced by 47.1% and 2.6% compared with
baseline and LSTM+KM [40], respectively. OFIOS also results in lower average WAF compared to
the other two techniques of multi-queue using AutoStream [39] and vStream [42]. All these three
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Fig. 14. Reduction in relative WAF w.r.t. legacy device using OFIOS compared to FIOS .

Fig. 15. Comparison with state-of-the-art techniques for: (a) Write Amplification Factor, and (b) Average I/O
Latency.

previous techniques uses update frequency as its feature. We implement a multi-queue technique
proposed in AutoStream [39] that uses multiple software queues to maintain data in sorted order
w.r.t. its update frequency. The multi-queue technique implements promote and demote operations
within these queues to track the changes in the workloads. vStream [42] identi!es virtual streams
by post processing the dead pages, and then uses k-means clustering to group any number of
virtual streams to an available number of physical streams. LSTM+KM [40] predicts the future
frequency using a neural network called Long Short-Term Memory (LSTM) and then uses k-
means clustering to group writes into an available number of physical streams.

For an e"cient streamID assignment, it is very important that it runs with minimum critical
I/O path latency. Usually millions of I/Os are performed every second on high performance stor-
age server, so even a small additional latency to each I/O can result in very drastic application
throughput degradation. Thus, apart from just evaluating the reduction in WAF, we also evaluate
and compare the additional I/O latency overhead in Figure 15(b). Figure 15(b) shows the average
combined read/write latency while running the above eight simultaneous application containers.
We see that OFIOS introduces very minimal additional latency compared to legacy (non-streaming)
SSD. Other techniques of AutoStream [39] and vStream [42] also introduce small additional la-
tencies due to their simplistic algorithms. However, their WAF bene!t is not as good as that of
OFIOS (see Figure 15(a)). LSTM+KM [40] introduces comparatively the highest additional latency
due to its use of the neural network. LSTM neural network require a lot of resources and time
to get trained and become ready to provide accurate prediction. Moreover, at runtime recurrent
training is required to adopt to the changing workloads. Thus, LSTMs can yield high prediction
accuracy, but become quite ine"cient for latency sensitive applications. This is also acknowledged
by the authors of LSTM+KM in their article. With reduced GC overhead in OFIOS, more device
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bandwidth is released to serve both read and write I/Os. So, the additional performance overhead of
our framework is mostly compensated with such performance improvement, resulting into a mini-
mal overhead. Finally, the above results indicate that our scheme can obviously reduce the WAF by
introducing very low additional read/write latency to capture the impact of dynamically changing
parallel applications. Additionally, notice that OFIOS performs well even while using append-only
applications such as RocksDB, because the application’s append-only pages that stores the always
increasing log is a notion of virtual addressing which is di!erent from the physical pages within
SSDs. Thus, although the application’s append-only pages (e.g., SST "les) keep increasing instead
of overwriting, as a "xed size SSD can only have "xed number of LBAs, so the same LBAs needs to
be reused. To perform good stream identi"cation, OFIOS do not need to relate the lifetime of the
application’s append-only pages with the LBAs. Rather, the feature that we discuss in our work
are directly captured at the block layer.

Finally, we analyze the sensitivity of OFIOS to the duration of TRunW indow and TT r ainW indow .
Con"guring TT r ainW indow less than the duration of TRunW indow ensures that the additional re-
sources consumed by background operations to train our model are only occupied during the
fraction of the runtime window. Note that con"guringTRunW indow smaller thanTT r ainW indow just
leads to additional overhead without any bene"ts. Thus, we conducted experiments with the train-
ing for a di!erent proportion of the run window. Particularly, we train for the last “n” portion of
each run window. We set “n” as 20%, 40%, 60%, 80% and compare the results with n = 100% (i.e.,
TT r ainW indow =TRunW indow ). n = 100% means that we always train in the background. The results
in Figure 14 show the WAF of OFIOS with n = 100%. The length of the training window that is
equal to that of the run window (i.e., TT r ainW indow /TRunW indow = 1) signi"es that we capture the
activities of the workloads in the background to dynamically train OFIOS to adapt quickly to work-
load changes. Decreasing the ratioTT r ainW indow /TRunW indow means we train only for the portion
of each run window. For example, TT r ainW indow /TRunW indow = 0.2 means we train for last 20% of
each run window. Then, based upon the observations in this last 20% of the run window, we decide
the feature to use in the next time window.

Figure 16 shows the runtime WAF for four di!erent settings of the training window time (i.e.,
TT r ainW indow /TRunW indow = 0.2, 0.4, 0.6, and 0.8). Figure 16 also shows the feature combinations
used by OFIOS to identify streams under each of these settings while executing multiple parallel
containerized workloads. Figure 17 shows the average WAF for the same experiments discussed in
Figure 16. Figures 16 and 17 show that higher WAF reduction can be achieved with a larger training
window as feature identi"cation is done better according to the dynamics of the workloads. Upon
in-depth analysis of feature combinations used by OFIOS during run time for di!erent intermediate
time intervals, we see that the larger the training window, more number of windows used same
as that of features used with TT r ainW indow /TRunW indow = 1. The blue shaded features represent
that for those time windows, the same feature as that of TT r ainW indow /TRunW indow = 1 is used.
More number of blue-shaded time windows represent that OFIOS can perform well using more
appropriate feature combinations resulting in lower WAF. OFIOS will not work well if the LBAs are
managed in an append-only fashion. This is the limitation of our proposed technique. However, we
would like to emphasize that as the "le system organizes and maintains the mapping of application
data into logical block addresses. Hence, OFIOS works "ne with append-only applications if the
underlying "le system is not append-only. This can be observed from our results in this section in
which we validate OFIOS using append-only applications such as RocksDB. We use Linux default
"le system ext4, which is a journaling "le system. We understand that using append-only "le
systems such as log-structured !le system (LFS) may raise new challenges. We will pay attention
to design new methods for dealing with append-only "le systems in our future study.
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Fig. 16. Relative WAF w.r.t. legacy device, training and running for di!erent size of time windows (i.e.,
TT r ainW indow /TRunW indow and the features used by OFIOS executing dynamically changing workload
for di!erent size of time windows (i.e., TT r ainW indow /TRunW indow : (a) TT r ainW indow /TRunW indow =
0.2, (b) TT r ainW indow /TRunW indow = 0.4, (c) TT r ainW indow /TRunW indow = 0.6, and (d) TT r ainW indow /
TRunW indow = 0.8

7 DISCUSSION
7.1 Implementation Layer
The identi!cation of streamIDs can be done at any layer, such as the application layer, the !le sys-
tem layer, the block layer, or the FTL layer. Stream identi!cation at the application layer is to let
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Fig. 17. Average relative WAF w.r.t. legacy device, training and running for di!erent size of time windows
(i.e., TT r ainW indow /TRunW indow .

applications be responsible to identify di!erent streams (for e.g., commit logs, metadata, indices,
and so on.) in their workloads. However, when multiple applications are running simultaneously
on the same host, stream management becomes more complex. Another option is to perform
stream identi"cation at the "le system layer that appends each "le with a corresponding streamID.
This is portable to di!erent applications without modifying them. But, this approach sometimes
does not work when some applications bypass the "le system to speed up data access. In addition,
as the upper layer application changes, the "le system may not be able to dynamically adjust the
streamID assignment. On the other hand, streamID identi"cation at the FTL layer is limited by
the computing and bu!ering capability of an SSD that is comparatively slower and smaller when
compared to the computing speed and bu!ering capability of the host (i.e., CPU and main mem-
ory). We "nd that the block layer implementation can avoid the above issues, i.e., being portable to
di!erent applications and multi-tenant environments and being able to utilize the host resources
for stream management. Thus, we choose to implement our stream identi"cation framework at
the block layer in this article.

7.2 Implementation Overhead
We use BD and SID, as described in Section 4, to maintain additional data of our framework. For a
3 TB #ash volume SSD storage, we require less than 50 MB in total to store all streamID metadata,
which is only 0.001% of the total #ash disk space. In our experiments, we have 128 GB DRAM in
our server. The SID footprint for di!erent workloads consumes less than 25 MB of main memory.
Therefore, the SID footprint overhead is only about 0.02% of the size of the main memory. We
mainly modi"ed two modules, i.e., ssd_init and ssd_clean in DiskSim. In order to pertain the
modi"cation throughout, we had to make subsequent changes in the ssd_timing, ssd_gang, and
ssd_utils modules. In total, we modi"ed approximately 560 lines of codes to enable the operation
of a general multi-stream SSD excludeing streamID identi"cation.

The streamID identi"cation time under FIOS is considered as the total additional operation time,
including the time required for feature extraction, K-means clustering, construction of aBD and
SID. Figure 18 shows the average time for streamID identi"cation by FIOS using four features (i.e.,
frequency, adjacent access, sequentiality, and coherency) with respect to a number of blocks in the
workload. We can see that FIOS does add extra latency in order to identify the best feature combi-
nations for improving SSD endurance. With an increase in dataset size (i.e., number of blocks), the
time to identify and maintain streamIDs increases as well. In our experiment, a 1.5 TB SSD was
required to run a workload with 3 billion LBAs (blocks). Thus, we believe it is acceptable for FIOS
to take around 600 seconds for streamID identi"cation. FIOS is greatly advantageous to be used for
all the applications and workloads that are not very latency sensitive such as email-server, but even
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Fig. 18. Average time for streamID identification using four features (frequency, adjacent access, sequential-
ity, and coherency) and the binary feature matrix as a function of the number of blocks in the workload.

for latency-sensitive applications (such as online marketplace) the additional delay introduced is
manageable. The OFIOS simultaneously queries the streamID using SID, while working to identify
data streams in the background. As DRAM access latency is uniform and very low, so we notice
that on an average each query takes around 20 ns. Thus, collectively querying for 3 billion LBAs
only consumes 6µs additional to the time taken by background operations to identify streams. Fi-
nally, we note that there exists a trade-o! between time e"ciency and endurance improvement.
To take advantage of OFIOS, con#guring appropriate window size is necessary considering the
abovementioned overheads and the estimated blocks accessed per second by the workloads. Since
a multi-stream SSD is developed to enhance the lifetime of SSDs, we believe that the main goal
of a streamID identi#cation algorithm should be to reduce write ampli#cations with the minimal
time overhead.

8 RELATED WORK
The high performance (compared to HDDs) and recently reduced cost (e.g., $/GB) of SSDs make
them perfect persistent storage devices. However, currently, the major issue with the $ash tech-
nology is the limited lifetime of $ash cells due to limited PE cycles. In order to balance the wear
out of $ash cells in the device and enable them to use it as plug and play, e"cient FTL algo-
rithms [8, 14, 24, 28, 29, 36, 43] have been developed. The FTL plays an important role in #ltering
out sequential streams from the mixed (sequential + random) streams. The work in [7] observed
that SSD’s performance and lifetime are highly sensitive to I/O workloads. The previous work
in [32] designed new #le systems, speci#cally for enhancing the lifetime of the SSDs. These #le
systems concentrated on transforming all random writes at the #le system level to sequential ones
at the SSD level and considered a new data grouping strategy on writing by putting data blocks
with similar update likelihood into the same segment. It was noticed that the reduction of the inter-
nal write ampli#cation of SSDs might increase the lifetime of SSDs. Thus the research work started
exploring all features that are related to the write ampli#cation factor. Reference [16] proved that
the write ampli#cation factor of SSDs depends on over-provisioning, cleaning policy, and work-
load pattern. Based on the measurement on NVMe disks, the study in [41] further revealed the
relationship between write ampli#cation factor and the write I/O sequential ratio.

The recent technology evolves a new product of multi-stream SSDs, which o!ers an intu-
itive storage interface to inform the host system about the expected lifetime of the data [1, 18,
20, 21, 23, 35]. Experimentation in [23] uses a real multi-stream SSD prototype to show that
the worst-case update throughput of a Cassandra NoSQL database system can be improved by
nearly 56%. The work in [15, 23, 38] did modi#cation in certain applications (i.e., FIO [6], Cassan-
dra [31], and RocksDB [19]) to enable application assigned streamID. The study shows that with
multi-streaming, SSDs can be more e"ciently used for achieving consistently better performance
and endurance. These existing techniques to assign streamIDs for a multi-stream SSD are too
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speci!c (such as application assigned streamIDs which requires to modify the application). Re-
cently, LSTM+KM [40] proposes a scheme to place data according to its predicted future tempera-
ture using a neural network called LSTM is in temporal and spatial dimensions. Ref. [42] proposes a
new concept of virtual streams (vStreams) for the multi-streamed SSDs. vStreams provide appli-
cation developers to a large number of virtual streams regardless of the number of physical streams
supported by the device. However, the mapping of these virtual streams to the physical streams
needs to be managed by applications. In [25, 26], stream management technique called PCStream
the stream allocation decisions are also made at a higher abstraction level. Thus, PCStream does
not support widely used applications like MySQL [17] that rely on a write bu"er. Moreover, appli-
cations MonetDB [22] that heavily access !les with mmap related functions such as mmap() and
msync() are not supported. As a result, in our research, we present a more portable and adaptable
method with minimalist overhead for feature-based streamID assignment in multi-stream SSDs at
the LBA level. Additionally, the innovation of our work lies in the scalable nature of our method,
which considers multiple I/O features simultaneously to group data into any number of streams
required by the SSD !rmware.

9 CONCLUSION
In this article, we !rst presented the di"erence between multi-stream storage and legacy storage
and explored the bene!ts of enhancing SSDs with multi-stream, i.e., increasing the lifetime and
performance of SSDs. We then investigated the impact of di"erent workload features on write am-
pli!cation to enable better utilization of multi-stream SSDs. We proposed a feature-based streamID
assignment technique (FIOS), which is capable of extracting features and assigning streamIDs with
low overhead. FIOS is also scalable to incorporate di"erent numbers of features and construct mul-
tiple streams to support the framework. To the best of our knowledge, this is the !rst streamID
assignment technique for multi-stream SSDs, which does not require any modi!cation to appli-
cations for using multi-stream SSDs. We also proposed a new feature to better capture a lifetime,
called coherency, which represents the friendship between write operations with respect to their
update time. We further investigated the correlation between workload attributes and workload
features to automatically determine a combination of features that can o"er the most WAF re-
duction. Finally, we designed the OFIOS technique to learn along with the changing-workload in
the background and automatically adapt the best feature combination to assign streamIDs. Our
experimental results show that FIOS achieves at least a 20% decrease in write ampli!cation across
di"erent workloads, which is a good qualitative improvement. We also found that di"erent features
have varying impacts on WAF, which indicates the importance of identifying a good combination
of features. Our evaluation also shows that our automation approach OFIOS of stream detection can
e"ectively further reduce the WAF by dynamically changing the feature combination w.r.t. changes
in workloads. In our future work, we plan to improve our methods to deal with the append-only
!le systems and explore di"erent machine learning techniques to learn the optimal value for the
parameters such as window size of background training, trace collection time, and sampling size.
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Auto-Tuning Parameters for Emerging
Multi-Stream Flash-Based Storage Drives
Through New I/O Pattern Generations

Jaki Bhimani , Adnan Maruf , Ningfang Mi, Rajinikanth Pandurangan, and Vijay Balakrishnan

Abstract—In the era of big data processing, more and more data centers in cloud storage are now replacing traditional HDDs with
enterprise SSDs. Both developers and users of these SSDs require thorough benchmarking to evaluate and configure the variable
parameters of emerging technologies. [2] and [3] are the recent development of the SSD industry, which assists in placing data on
SSDs in a smart way to improve application performance and SSD endurance. The challenging part to use multi-stream SSDs is to
assign stream IDs to incoming writes, such that each stream consists of data with a similar lifetime. The benefit of the stream
management algorithms varies over different workloads. Thus, first, we propose a new framework, called Pattern I/O generator
(PatIO), to capture the enterprise storage behavior that is prevailing across various user workloads, virtualization setup, file systems,
and volume managers for the database server applications on flash-based storage. Second, using PatIO, we study what type of
applications may be benefited by which stream assignment algorithm. Third, we design the framework to automatically tune the
variable parameters of different stream identification algorithms of the multi-stream SSDs. Our evaluation shows 20 to 110 percent of
the reward function increase, measuring the cumulative impact on application performance and SSD endurance.

Index Terms—Flash memory, I/O pattern generator, benchmarking, multi-stream SSDs

Ç

1 INTRODUCTION

OPTIMIZING the operation of modern cloud storage sys-
tems for various big data applications is critical. Evalu-

ating the effect of any storage device firmware or hardware
amendments using real system deployment requires a lot of
resources, time and efforts towards installation and running
of different workloads to test. Moreover, many different vir-
tualization and system setup options in a cloud environ-
ment also need to be tested for each workload. The research
advancement by evaluating a tiny subset of these possible
settings and workloads then becomes very limited. Thus,
benchmarking is very important for developers and users of
evolving cloud storage.

Most traditional I/O benchmarking tools [4], [5] were
designed for hard disk drives (HDDs). Hence, when bench-
marking storage, the I/O workloads generated by these
tools do not resemble the I/O activities of real workloads on
flash-based solid-state drives (SSDs). The main problems
are that with multiple design choices at the virtualization

and system layer, (1) the data generated by traditional syn-
thetic I/O generators might be too simple, or (2) it demands
a lot of time and storage space to generate and store differ-
ent trace logs for each workload with trace-based I/O gen-
erators. Fig. 1 compares the variance of I/O size for reads
and writes over NVMe SSDs (top) and HDDs (bottom). We
run the TPC-H decision support benchmark with twenty-
two different queries executed on eight different input
tables of various sizes with Apache Spark application. We
observe that I/O sizes running on NVMe SSD are
completely different from those running on HDD. The size
of both read and write I/Os exhibits a periodic pattern
when using NVMe SSD. Large read/write I/Os are periodi-
cally clustered together, with some idle intervals between
I/O size spikes. Therefore, new benchmark methods that
capture realistic I/O activities and require fewer resources,
time, and efforts are needed.

Motivated by this, first, we propose a new benchmarking
framework, called Pattern I/O generator (PatIO) to capture
the enterprise storage behavior that is prevailing across var-
ious user workloads, virtualization setup, file systems, and
volume managers for different database server applications
on flash-based storage. Second, we integrate PatIO with
multi-stream SSDs, to study the impact of the various inter-
nal stream identification algorithms. Third, we design and
integrate the auto-tuning module within multi-stream SSDs
to tune the variable parameters of different stream identifi-
cation algorithms. The main contributions and features of
our solution are as follows.

1) Extract and Generate I/O Patterns.An I/O layout pattern
is the property of an I/O workload, which is the key to
the application performance (efficiency) and storage health
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(endurance). Multiple dimensions, including disk offset,
time, read/write rate (also called data temperature) and
I/O size, frame an I/O layout pattern. Each workload may
have many different patterns representing different real
database activities like compaction and log management.
We collect and study I/O patterns of different big data
workloads with a different setup for various database server
applications using flash-based cloud storage. Specifically,
we ran more than 1,000 workloads of each database server
application with different SSDs of various capacities (from
100 GB to 1 TB) and different file systems such as xfs and
ext4. Our pattern extraction methodology involves a three-
step process, i.e., dissect, construct, and integrate. We dis-
sect the overall I/O activities of real workloads to extract
distinct repetitive I/O patterns. Then, we identify different
input features of an I/O generating engine (e.g., FIO, a pop-
ular I/O engine), to construct jobs that generate I/Os resem-
bling different I/O activities of a real workload. We
generate unique I/O patterns using various combinations
of multiple I/O jobs. We finally construct a pattern ware-
house as the collection of these I/O patterns. Different com-
binations of synthetically generated I/O patterns can
reproduce comprehensive characteristics of various real
workloads.

2) Ensure Scalability and Usability. The second contribu-
tion of our work is to make PatIO scalable to generate I/Os
over different sizes of storage disks and different storage
volumes consisting of multiple SSDs in cloud storage. The
user is allowed to specify the storage size and the expected
execution time of the desired workload. PatIO can then
automatically change all I/O jobs at the low level and mod-
ify the necessary input options in I/O patterns on-the-fly
for all jobs. To provide an easy-to-use experience, we fur-
ther develop a graphical user interface (GUI) and an auto-
matic plotting wrapper for PatIO. It decouples the user
from the complexity of underlying code modification, inte-
gration, compilation, and execution.

3) Ensure Expandability and Integrability. We aim to cap-
ture a variety of different patterns from samples of I/O
workloads that we know in a pattern warehouse. It is also
easy to expand our pattern warehouse by adding new pat-
terns based on the new knowledge of applications and
workloads. In addition, our I/O generator can be integrated
into different environments of the storage industry to fasten
research, development, and evolution phases. For example,
a possible deployment could be to run PatIO on FIO using
FPGAs for next-generation SSD hardware development
(e.g., key-value SSDs) or to use PatIO for a firmware
configuration such as the proportion of over-provisioning
in SSDs.

4) Practical Application. We further enhance our frame-
work to evaluate the efficiency and endurance of multi-

stream SSDs. We evaluate the performance of two existing
automatic stream assignment algorithms known as auto-
stream: SFR and MQ proposed in [6], for different I/O pat-
terns. It helps service providers of cloud storage learn what
types of workloads are more benefited by using flash-based
multi-stream SSDs. It also helps users of cloud storage to
understand if the stream identification is appropriately
made, and how their stream assigning algorithms can be
further improved to further leverage performance by flash-
based SSDs.

5) Auto-Tuning Module. Our final contribution is to con-
struct an infrastructure for auto-tuning internal variable
parameters of the multi-stream SSDs. In particular, we build
a peripheral infrastructure to tune variable parameters for
those two existing stream assignment algorithms [6]. In our
experiments, we observe that without proper tuning, the
benefits of multi-stream technologies may be restrained
when some factors like the SSD version, SSD capacity,
underlying firmware are changed. Moreover, tuning manu-
ally could take a very long time, like a couple of months.
Motivated by this, we build an infrastructure on top of
PatIO to support automatic tuning for different I/O
patterns.

We evaluate our framework by using different container-
ized workloads running using standalone and simultaneous
database applications such as MySQL, Cassandra, and For-
estDB. Specifically, we compare I/O characteristics (such as
arrival address, I/O size, and read over write ratio), and I/O
performance (such as throughput, average latency, tail laten-
cies and Write Amplification Factor (WAF)) of generated
workloads with those of real-world workloads. Finally, we
discuss the scalability of workloads generated by PatIO to
adapt to the SSDs of different capacities.

The rest of the paper is structured as follows. Section 2,
discusses the existing techniques. Section 3 presents the
PatIO architecture. Section 4 evaluates our technique. The
research direction enabled by PatIO towards evolving flash
based storage devices is explained in Section 5. We describe
and evaluate our auto-tuning module in Section 6. Finally,
we draw our conclusions in Section 7.

2 RELATED WORKS

Most benchmarking techniques [5], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17] use samples of proprietary
data to first record the overall average statistics (e.g., aver-
age I/O rate and average read to write ratio) of real work-
loads and then reproduce I/Os synthetically based on
averages. Such benchmarking tools results in a uniform dis-
tribution of I/Os on disk and a constant throughput during
the execution. Thus, we argue that although these synthetic
I/O generators operate with low overhead and negligible
resource requirements, they are not sufficient to capture the
working of modern cloud workloads on evolving flash tech-
nology. Thus, SSDs behave differently on these traditional
synthetic workloads, compared with what they do on real-
world workloads.

Apart from widely used synthetic I/O generators, ano-
ther popular benchmarking technique in the storage indus-
try is workload replay. The replay tools [4], [18], [19], [20],
[21], record the characteristics of real I/O data for different

Fig. 1. I/O size of TPC-H-Spark with 50G workload comparing (a) SSD
reads, (b) SSD writes, (c) HDD reads, and (d) HDD writes.
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granularities like blocks, data chunks, and sectors. By using
the recorded logs, these tools can almost exactly replicate
I/O activities of real workloads. Recent replay tools [19]
have enhanced capability to generate additional data dep-
endency graphs and be able to accurately replay the I/O
workload. This technique has high precision. However, cap-
turing all possible workload traces to frame a trace reposi-
tory is challenging. Storing these traces also demands a
large amount of storage resources. One way to generate
“real” I/Os with a low storage requirement for characteriz-
ing data would be to increase the recording granularity of
I/O characteristics and get a short trace that only abstracts
the characteristics of a real workload. However, it still
requires efforts to run different real application workloads
to record traces and needs more storage resources when the
number of traces increases.

Application level benchmarks [7], [18], [22], [23], [24], [25],
[26], [27] strive to mimic I/O behaviours of specific applica-
tions, but require time and efforts for installation, configura-
tion and database loading before running. YCSB [22] is a
framework and common set of workloads to evaluate the
performance of different “key-value” and “cloud” serving
stores. Another widely used database management system
(DBMS) benchmark, DBbench [23], can evaluate the perfor-
mance of a plurality of DBMS’s stores both DBMS indepen-
dent and DBMS specific files in computer memory.

Filesystem level benchmarks [28], [29] spawn several
threads or processes doing a particular type of I/O action
as specified by the user. They help to answer the trivial
question such as, ”Which file system is better.” However,
our focus is to characterize the performance of SSDs, so it
is useful to compare with the benchmarks that report
bandwidth and latency when reading from and writing to
the disk in various-sized increments without filesystem
layer.

Block level benchmarks [19], [28], [30], [31], [32] provide the
ability to record and replay block-level I/Os. However, they
have heavy overheads to maintain ordering, CPU map-
pings, and time-separation of I/Os. BlkTrace [30] provided
the ability to collect detailed traces from the kernel for each
I/O processed by the block IO layer. HFPlayer [19] used the
generated dependency graph and can replay the I/O work-
load in a scaled environment. Buttress [31] used synchro-
nous I/O to replay block traces.

In contrast, PatIO does not require to store, read, and
follow any I/O trace file while regenerating I/Os. Thus,
PatIO is more cost-efficient and less time-consuming com-
pared to existing I/O replay techniques, and more impor-
tantly, it is much more precise compared to naive I/O
generators (i.e., naive FIO [5]). We finally summarize the
features of PatIO and different popular existing bench-
marking techniques in Table 1. To the best of our knowl-
edge, this is the first attempt to analyze and improve the
impact of variable parameters of the internal algorithms of
emerging SSDs such as multi-stream SSDs.

3 PATIO FRAMEWORK

In this section, we discuss the overall architecture and then
elaborate on the three components of methodology - dissect,
construct, and integrate for PatIO.1 The driving force of
building PatIO is to study the diversities of I/O activities
using different data processing workloads on flash-based
cloud storage and then regenerate I/O characteristics repre-
senting the complex transaction forms like compaction, log
management, and key-value store that are performed by
different database applications on flash-based SSDs.

In PatIO, we extract the common I/O patterns by observ-
ing many different workloads of various applications over
different SSDs. We carefully design ready to use I/O work-
loads to replicate many common I/O patterns observed
while running real applications. Particularly, the combina-
tion of our I/O patterns replicates the cumulative activities
generated by different workloads of any applications. Thus,
PatIO strives to capture the common characteristics of a
group of similar workloads rather than exactly resembling
just one particular workload. PatIO is lightweight, as it
does not require to record, store, and retrieve logs of I/O
activities. PatIO is also designed to be scalable to generate
I/O workloads over different storage sizes. The main contri-
butions and features of our solution are as follows.

3.1 Architecture of PatIO
Fig. 2 shows the architecture of our framework. First, the
front end GUI allows the user to configure a workloads’
I/O patterns and its expected execution time and to select
the size of the storage disk and the desired level of back-
ground noise. The pattern generator then dynamically pulls

TABLE 1
PatIO versus Existing Storage Benchmarking Tools (Bench. -

Benchmarking, Req. - Require, Endu. - Endurance, Cap. - Capture,
Var. - Variance, Gen. - Generate, Int. - Interface, Across - Acr.)

Fig. 2. Block diagram: pattern generation.

1. We use “Disk” interchangeably with “SSD” to represent flash
storage throughout this work.
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corresponding files of patterns from the pattern warehouse
based on the selected options.

A workload is a combination of single or multiple pat-
terns. Each pattern is a multi-threaded system process and
consists of multiple I/O jobs, where a single thread executes
each job. Different patterns are executed together to con-
struct a workload. However, before simultaneously execut-
ing all jobs of selected patterns, the pattern generator needs
to modify the input parameters of these jobs according to the
specified execution time and disk size by the user. In addi-
tion, the programming commands given by jobs of different
processes may have conflicts, e.g., simultaneously writing
different values at a specific SSD address. Then, the pat-
tern generator also needs to perform a workload modifi-
cation to ensure that all job files of the selected workload
run correctly during the parallel execution. This
whole process of modifying I/O jobs is called workload
concatenation.

Fig. 2 shows the process of workload concatenation by a
loop of events aroundPatternGenerator, which contains excep-
tion handling, identifying conflicts, and modifying patterns.
Sometimes, job modification to resolve a conflict may cause
new conflicts. Thus, workload concatenation is repeated until
there are no more conflicts. Later, in Section 3.4, we explain
details about job modification and types of conflicts. Finally,
according to the concatenated workload, the I/O engine gen-
erates I/Os that will be performed by FIO [5] on back-end
SSDs to resemble I/O activities of real parallel applications.
PatIO also provides detailed reports and graphs to show I/O
performance (e.g., throughput, latency, and tail latency) and
SSD endurance, such as Write Amplification Factor. All
results can be stored as a backup log for future analysis.

3.2 Study of Real I/O Patterns: Dissect
An I/O Pattern is a Cluster of I/O Activities of a Workload that has
Similar Characteristics. Here, we present our observations on
I/O patterns of real applications, which inspires our design
of PatIO. In our study of the I/O activities of various real
applications on SSDs, we consider instrumenting general
purpose applications such as Kmeans clustering and Pag-
erank as well as database applications such as MySQL and
RocksDB. However, we observed that for generic applica-
tions, the processing time is dominated by computation, and
intermediate shuffling data generated by them is small and
fits in main memory. The data dependencies within such
intermediate data that are cached are served from memory.
Moreover, these applications perform most of their I/O
activities only at the beginning to read the data into memory
and at the end to write the final outputs. Thus, we mainly
discuss the I/O intensive database workloads whose execu-
tion time is dominated by I/O processing.

We study the I/O activities of at least 10 different work-
loads for each of the 100 different applications on various
models and capacities of SSDs. Fig. 3 shows the I/O access
patterns for some representative real SQL and NoSQL data-
base applications on SSDs. The workload configurations of
these real applications are listed in Table 2. We observe that
a real application exhibits variance in I/O activities on SSDs
(also called disk) over time. For example, some applications
perform their I/Os in a uniform horizontal stripe wise fash-
ion, see MySQL and Cassandra in Figs. 3a and 3b. While
some other applications show a periodic pattern of I/O lay-
out over time, such as MongoDB and ForestDB in Figs. 3c
and 3d. Also, there exist applications like RocksDB in Fig. 3e
that present a horizontal stripe wise pattern. One I/O stripe
of RocksDB (see the upper region of Fig. 3e) further exhibits
a phase-wise pattern of I/O layout where I/O activities
slowly start spreading over the disk and then construct a uni-
form horizontal strip when the workload has run for a pro-
longed duration. Thus, the diversity in I/O access patterns
motivates us to develop a new I/O generator that can cap-
ture these I/O behaviors and dynamically generate I/O
workloads for different SSD devices.

First, we dissect the overall I/O activities of different user
workloads, virtualization setup, file systems, and volume
managers for various real database server applications on
flash-based storage. We identify the prevailing attributes in
distinct visual I/O patterns. The I/O characteristics include
I/O sizes, I/O densities, ratios of read to write, and I/O
inter-arrival time. We analyze the distribution of these I/O
characteristics across different address space of flash-based
SSDs and the variation of these I/O characteristics over
workload execution time. For example, MongoDB (see
Fig. 3c) comprises of different I/O patterns, such as straight
horizontal lines representing overwrites on the same disk
offset, and inclined vertical lines across the disk represent-
ing a form of sequential writes. To extract different I/O pat-
terns, we perform data classification using the K Nearest
Neighbour (K-NN) pattern classifier with different distance
measures (such as euclidean, Manhattan, Chebychev, and

Fig. 3. Disk access patterns over time by real data processing applications.

TABLE 2
Workload Configurations of Different Real Applications (KV -

key/value, col. - columns)
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Percent disagreement) and then study classification results
with different K in K-NN to distinguish various I/O pat-
terns following the majority.

3.3 Pattern Warehouse: Construct
Pattern warehouse is a collection of I/O patterns used to
construct different I/O workloads. Our framework is
expandable because we can add new patterns into the pat-
tern warehouse once we obtain the knowledge of other
applications and workloads. Our pattern warehouse cur-
rently includes 15 different workload patterns. It provides
some recommended pattern combinations to resemble real
applications, like MySQL, Cassandra, and MongoDB.

Multiple I/O generating jobs constructs each I/O pattern.
A real application often exhibits variance in I/O activities
across storage space over time.We observe that real workload
I/O patterns can be grouped into different categories, such as
horizontal stripe wise, periodic, phase-wise, and abrupt. To
capture this variance, we develop different I/O jobs. A job is
responsible for rendering I/Os for part of the I/O workload
pattern to represent some specific I/O layout. Each job is com-
posed of a set of I/O generating features of the FIO engine.
Thus, integrating these I/O jobs together can help to capture
the diversity of a real I/Oworkload pattern.

We construct 15 different I/O patterns as listed in Table 3.
For example, patterns RIDV and SWMJDO are of horizontal
strip-wise fashion. BRW is a horizontal stripe wise with
alternative read and write intensive phases. BSDS, Sprinkler,
and FSH provide periodic I/O patterns. BSHDV is a phase-

wise I/O pattern. HO and Raindrops both fall under the
abrupt category. Some real I/O workloads were observed
to have I/O patterns that are a combination of different cate-
gories such as RocksDB 3 as discussed in Section 1. In order
to replicate such patterns, we further construct five I/O pat-
terns, namely BSVDV, BS, AC, VC and BRW, that represent
the combination of horizontal stripe wise and periodic I/O
fashion. The I/O pattern BDA is a combination of periodic
and phase-wise types, andHS is a combination of horizontal
stripe wise and phase-wise categories. Thus, we ensure that
pattern warehouse consists of all distinct patterns that we
majorly observe in real I/O workloads. We can always add
new patterns to our pattern warehouse when required.

One of the challenging problems is identifying features
that could be used to construct a particular I/O pattern. We
solve this problem by studying and analyzing combinations
of different features and then setting appropriate values of
features for each I/O pattern. Table 3 lists the obtained com-
binations of features we also use some other common
options, such as –random_number_generator, –ini-

tial_seed, –iodepth, –ioengine, –rw, –device,

–if-else, –for_loops, –while_loops, –kill_job

to manage runtime operations of I/O jobs. We name I/O
patterns according to their visual appearance like sprinkler,
raindrops, backward steps.

Next, we explain some representative I/O characteristics
that we identify and use to emulate different I/O patterns.

I/O Holes. We observe that many applications do not per-
form I/Os during some time intervals or within some disk

TABLE 3
Building I/O Patterns: The Input Features for Jobs of Different I/O Patterns

I/O Pattern Feature_Set{}

Random I/O with Density Variance (RIDV) –rate_iops, –offset, –bsrange, –thinktime, –thinktime_blocks

Sequential Writes with Multiple Jobs of
Different Offset (SWMJDO)

–rate_iops, –size, –numjobs, –offset, –blocksize_range,
–offset_increment

Bars of R/W (BRW) –rate_iops, –numjobs, –offset, –runtime, –size

Bamboo Sticks Different Slopes (BSDS) –rate_iops, –offset, –startdelay, –rw_sequencer

Fountain Scatter Horizontal (FSH) –rw_sequencer, –rate_iops, –numjobs, –offset_increment,
–blocksize_range

Bamboo Sticks Horizontal Density Variance
(BSHDV)

–rate_iops,–bsrange, –startdelay, –rw_sequencer

Horizontal Overwrites (HO) –rw_sequencer, –startdelay, –rate_iops,
–random_distribution=zipf

Raindrops –thinktime, –thinktime_blocks, –rw_sequencer, –rate_iops,
–numjobs, –offset, –runtime, –size

Sprinkler –rw_sequencer, –rate_iops, –numjobs, –offset,
–offset_increment, –blocksize_range

Bamboo Sticks Vertical Density Variance
(BSVDV)

–rate_iops,–offset,–bsrange, –startdelay, –rw_sequencer, –size

Backward Steps (BS) –rw_sequencer, –rate_iops, –numjobs, –offset, –runtime,
–wait_for_previous, –offset_increment, –blocksize_range

Angular Chopping (AC) –rw_sequencer, –rate_iops, –numjobs, –offset, –runtime, –size

Vertical Chopping (VC) –thinktime, –thinktime_blocks, –rw_sequencer, –rate_iops,
–offset, –runtime, –size

Bamboo Different Alignment (BDA) –thinktime, –thinktime_blocks, –rw_sequencer, –rate_iops,
–numjobs, –runtime, –size

Horizontal Shower (HS) –rw_sequencer, –rate_iops, –numjobs, –offset
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offset ranges. For example, Fig. 3b, shows the Cassandra
workload that has a horizontal blank space band, where no
I/Os are performed to a particular disk offset range. We call
such a blank space as I/O hole. There could be two types of
I/O holes, temporal I/O holes and disk offset I/O holes. A
temporal I/O hole may be caused by a system stall for wait-
ing for other resources like CPU, I/O bus, or may happen
when the upper layers in I/O stack such as cache or memory
are sufficient to serve the desired request. On the other side,
a disk offset I/O hole may be caused by wear leveling activi-
ties or disk space allocation through application transactions.
Modeling such I/O holes is critical to performance because
during these I/O holes, overall I/O throughput may fluctu-
ate. Furthermore, a benchmarking tool for flash-based SSDs,
that can replicate such I/O holes can better estimate endur-
ance. Thus, we capture I/O holes of different shapes and
sizes by setting options like thinktime, thinkblocks,

startdelay, offset increment for each job.
Byte Density. The measure of how many bytes are stored

within a particular range of storage addresses is called Byte
density. We observe that in many real applications, different
disk spaces are accessed with different byte density. For
example, when a MySQL database application stores its
metadata in some disk space, it might be accessed more fre-
quently than the other disk space. Moreover, we observe
that byte density may also vary across different workload
execution time. For example, in MongoDB, depending on
the keys affected by the “update” operation, it may result in
modifying a different number of indexes in the collection.
Thus, the number of I/O activities can be sparse or dense
depending upon the number of indexes modified during
the workload’s execution. It is vital to capture byte density
because the variation in byte density is the primary source
of I/O latency variations and latency tails. Thus, we use var-
ious I/O distributions, such as Zipfian, pareto, uni-

form to capture byte density in each I/O job.
I/O Jumps. A pure sequential I/O should span continu-

ously over consecutive disk addresses. However, we observe
that real workloads sometimes leave empty disk addresses
between small sequential writes, e.g., skipping 16 KB after
writing every 128 KB sequentially. We then say that the I/O
patterns of these applications exhibit periodic I/O jumps (i.e.,
addresses left unwritten) while performing sequential reads
or writes. Such an I/O jump can allow sequential I/Os to
span over a wide range of disk offsets in a short period. I/O
jumps result in inclined vertical lines across the disk, as
observed in MongoDB, see Fig. 3. We use options like
sequencer and its offset to generate a sequential I/O
sequencewith I/O jumps.

Pattern Feature Setting. As mentioned above, Table 3 lists
all 15 I/O patterns with corresponding list of features for
each. Due to the limited space, we cannot explain the logical
derivation for deciding the feature_set of all patterns in
Table 3. Here, we use the pattern, called Bamboo Different
Alignment (BDA), as a representative to explain our logical
process of feature_set derivation. This pattern is inspired by
dissecting the MongoDB application when running different
YCSB workloads. Fig. 3c, shows the real I/O layout of one of
the workloads. We observe a repetitive pattern with a stretch
of partially sequential writes over the whole disk space. We
say these I/Os as “partially sequential” because they show

an I/O jump after every block of writes to range over the
whole disk space in a short period. Apart from that, we con-
sider to use the features -thinktime and -thinktime_-

blocks to control periodicity and I/O activities happening
in each period. By setting different values for -rwse-

quencer and -rate_iops, different slopes of alignment
can be achieved. We have preset default values for each of
these features within each I/O pattern in the workloads that
we design. These values are automatically varied according
to the necessary concatenation of multiple I/O patterns,
length of the desiredworkload, and the SSD size.

Fig. 4 shows the resultant BDA pattern for 120 seconds
on 960 GB SSD. As seen from the top plot of the figure, the
I/O layout consists of periodic I/Os, where each period has
a dense region at the beginning followed by the sparser
region. Thus, this I/O pattern is constructed by using two
jobs. The corresponding features of each job allow it to gen-
erate periodic I/Os with different rates to generate denser
and sparser regions. Given these two jobs with different
I/O rates, we can observe that the throughput (see the bot-
tom plot in Fig. 4) of this generated pattern exhibits variance
over time. Such throughput variations well match the
throughput variations in real applications.

3.4 Pattern Generator: Integrate
The pattern generator is the central module of PatIO,
which is responsible for communicating with the interactive
GUI input, pattern warehouse, and I/O execution modules.
This module integrate different combinations of syntheti-
cally generated I/O patterns to reproduce the comprehen-
sive characteristics of various real workloads and system
setup for the database server applications. Specifically, the
pattern generator gets the user input from the interactive
GUI input module. It then fetches the corresponding I/O
pattern files from the pattern warehouse. These I/O jobs are
then adapted according to the user-specified storage disk
size and execution time. Among all the features of the jobs,
we first identify a subset of features that could be affected
by the change in disk size. Then, the features in this subset
are modified by a linear scaling, as shown in Equation (1).
For example, I/O rangewhich is set to 400-500 GB for 500 GB
drive is changed to 800-1000 GB for 1 TB storage disk size.

New Featurei ¼ default Featurei:
New Size

default Size

for 8 Jobs i:

(1)

Similarly, the execution time of each job for all the patterns
needs to be changed according to the desired execution

Fig. 4. I/O pattern layout generated by PatIO for Bamboo Different
Allignment (BDA) pattern.
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time given by the user. Finally, we execute jobs of all
selected I/O patterns in parallel.

Online Conflict Management. For parallel execution, some
jobs may have conflicts with others. As discussed before, a
pattern is executed as a multi-threaded system process.
When multiple patterns are required to execute simulta-
neously, programming commands that are given to the I/O
generating engine by one process’s threads may affect
threads of other processes. Thus, before executing all the
jobs of selected patterns, the pattern generator performs
careful workload concatenation of all the job files. It is
essential to identify and handle these conflicts. Our excep-
tion handling module identifies conflicts by maintaining a
hash table of features and I/O jobs. If there is a conflict,
those jobs are modified according to the type of conflict. The
modified I/O jobs are then concatenated again until there
are no further conflicts. Here, we use two common types of
conflicts as examples to show corresponding modifications
performed to resolve them.

Contradiction. Jobs of different patterns might set differ-
ent values of the same feature. We call this type of conflict
as contradiction. For example, one job might request I/O
engine to set I/O size feature to 4K for a particular disk off-
set. However, at the same time, another job of a different
pattern might want to set I/O size of 64 KB for the same
disk offset. For FIO, we notice that both of these I/O jobs
may stall for a long time or be dropped off when such a con-
tradiction occurs. We resolve this contradiction by introduc-
ing some time delay between the operation of these two
jobs. As a result, in the above example, we allow the first job
to perform 4 KB I/Os and later let the second job run its
64 KB I/Os on the same disk offset.

Interference. Some actions taken by a job of one pattern
might unintentionally influence jobs of the other patterns.
For example, a killall command in a job of pattern_x
might also kill jobs of all the other concatenated patterns.
Thus, we need to maintain a list of such features and iden-
tify if any jobs are using these features. If yes, then we need
to modify these jobs to ensure such an interfering command
only affects the jobs of the desired pattern. That is, we
would identify the thread ID of the jobs of each pattern and
kill only the threads of the concerned pattern rather than
using the default kill all command. The types of conflicts
and their resolutions may vary with different I/O engine.
However, it is crucial to observe such behavior as it vastly
impacts I/O layout on disk.

Parallel Executor.After resolving all conflicts (i.e., no more
conflicts in the concatenated workload set), we execute the
generated synthetic I/O workload and measure the perfor-
mance of I/O activities over the storage space. All the work-
loads generated by our framework are capable of generating
logs during the runtime and record the performance in terms
of I/O bandwidth, IOPS, throughput, and latency.

3.5 GUI Interface and Process of Using
In order to provide an easy-to-use experience, we develop a
GUI interface for PatIO. We mainly have two use scenarios
- 1) if the user wants to generate the I/O activities for one of
our pre-defined applications. As of now, we provide a direct
option to generate I/Os resembling the five most popular
database applications such as MySQL, Cassandra,

MongoDB, ForestDB, and RocksDB. The user can use corre-
sponding checkboxes to select one or multiple of these real
applications in our GUI. 2) if the user wants to generate the
I/O activities for some other applications. Then, we assume
that the user should have some idea from their experience or
plots of previously collected traces that what type of I/Os
are they looking to generate. Depending upon their require-
ments, they can select one or multiple I/O layout patterns in
our GUI, e.g., horizontal overwrites, bars of read/write, and
backward steps. We have 15 different patterns with a visual
snapshot of the disk layout for each to choose from in our
GUI. Then the user defines the desired runtime (i.e., execu-
tion time) of an I/O workload and the size of the storage
space exposed to I/Os. Additionally, the GUI also allows
selecting a different level of background noise, which may
be incurred by various background I/O activities of the SSDs
such as garbage collection, wear-leveling, etc. Finally, the
user clicks run, and PatIO accordingly generates I/Os,
instruments the performance, collects traces, and plots vari-
ous generally used graphs such as average throughput over
time, the cumulative distribution of the tail latencies, and
instantaneous write amplification factor of SSD. Thus,
besides taking the input options of the desired workload, the
GUI is also responsible for linking an option in the widget
with its corresponding PatternID and send this option to the
back-end pattern generator module.

4 EVALUATION

In this section, we evaluate PatIO by comparing I/O char-
acteristics and performance of generated workloads with
real-world workloads of different database applications
such as MySQL, Cassandra, and ForestDB. Table 4 gives the
detailed hardware configuration of our platform on which
we develop PatIO and run real application workloads.
PatIO is built using python. It uses inbuilt advance librar-
ies of python like matplotlib, NumPy, and Tkinter. Each
pattern in pattern warehouse contains a bash program that

TABLE 4
Hardware Configuration

CPU Type Intel(R) Xeon(R)

CPU E5-2640 v3

CPU Speed 2.60 GHz

CPU #Cores 32 hyper-threaded

CPU Cache Size 20480 KB

Main Memory 128 GB

OS Ubuntu 16.04 LTS

OS Kernel Version 4.4.0-13generic

File System ext4

Storage No-stream and Multi-stream
NVMe SSD 960GB and 480GB

Docker Version 1.11

VMware Workstation 12.5.0

FIO Version 2.2
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can be used to construct I/O jobs. We use the FIO engine to
generate I/Os.

Fig. 5 shows the I/O stack of PatIO in comparison to
that of real application. As shown in Fig. 5, PatIO generates
an I/O pattern that can capture real I/O activities (see the
left part in the figure) of different user workloads (e.g.,
YCSB) running in docker containers on the client-side for
various database server applications (e.g., MongoDB) run-
ning in the datacenter on the server-side that can use differ-
ent file systems (e.g., ext4) and volume managers (e.g.,
LVM). More importantly, the operations of different data-
base server applications using various cloud setup of user
workloads and system settings at the file system and vol-
ume manager layers are abstracted by PatIO. Thus, PatIO
requires less time and resources for benchmarking.

We study the I/O activities of different userworkloads and
applications (e.g., YCSB, Cassandra-stress, and DB_bench)
running on parallel virtual machines and containerized infra-
structures with different database servers (e.g., MySQL, Cas-
sandra, ForestDB, MongoDB, RocksDB) operating in the
data center. As shown in Table 2, each application workload
can have its configuration of the number of transactions, com-
paction rate, and read-write ratio. We also study different
combinations of applications operating directly on the local
machine and in containerized docker environments, e.g.,
MySQL+Cassandra with a different number of containers for
each application.

4.1 Characteristics Comparison
First, we compare the characteristics of a real workload and a
synthetic workload generated by PatIO by measuring their
statistical central-tendency like Mean, Median, and Mode.
We also compare the spread of data from the central ten-
dency, such as standard deviation and coefficient of variance.

Workload Characteristics. Different characteristics are obs-
erved from a workload such as I/O layout on a storage
disk, I/O size, and read-write ratio. We perform experi-
ments with 1,000+ workloads of different applications. As a
representative, we here present results for some of them.
The configurations of real applications are given in Table 2.
Fig. 6a compares I/O arrivals on disk space over time for
real and PatIOworkloads. We see that the statistical results
of central tendency (like Mean and Median) for real and
PatIO workloads are very similar. Here, we use unit posi-
tive and negative standard deviation to measure the spread
of data from the central tendency and confidence in statisti-
cal conclusions. We also observe that the real and PatIO

workloads of all the applications show similar standard
deviations. Fig. 7 compares the coefficient of variance of I/
O arrivals on disk space over time for real and PatIOwork-
loads. We see mostly error between real and PatIO work-
loads remains small.

I/O Size. I/O size is another important characteristic that
affects performance. Because the sizes of I/Os vary over time
for a real workload, just reproducing I/Oswith the same size
(e.g., average I/O size) is not sufficient. Thus, we argue that it
is critically important to emulate the variance of I/O size
over execution time. Fig. 6b shows the comparison of the sta-
tistics of I/O size over time for real and PatIO workloads.
BesidesMean andMedian, we further useMode to represent
the size of the majority of I/Os. We can see that the modes
of real and PatIO workloads also match well in Fig. 6b. We
further observe that PatIO can reconstruct the variance of a
real workload as seen from the standard deviation and coef-
ficient of variance. While comparing all different metrics of
measurement, the maximum error percentage is less than
25 percent, which indicates a good resemblance between real
workloads and PatIO.

Read-Write Temperature. Besides the above statistics com-
parisons, we also compare the characteristics over the
runtime of real and PatIOworkloads. Fig. 8 shows the read
to write ratio over runtime as a representative by plotting
the moving averages taken over every 30 seconds until
15 minutes. Here, we show the results of MySQL and Cas-
sandra. We see that the generated workload can reproduce
the actual read/write temperatures.

4.2 Performance Comparison
Throughput. We further compare the throughput (i.e., the
number of I/Os performed on disk per second) of the aggre-
gate generated workload using PatIO over variants of 1,000

Fig. 5. I/O stack of PatIO in comparison to that of real application.

Fig. 6. (a) Mean, Median, and Standard Deviation of I/O arrivals on disk
space over time for real and PatIO workloads, (Note: Mode for Arrival
Address is not plotted as I/Os to same block does not necessarily imply
I/Os to the same address.) and (b) Mean, Median, Mode, and Standard
Deviation of I/O Size for real and PatIO workloads. (Note: y-axis is loga-
rithmic scale, so Standard Deviation does not look to be equally distrib-
uted on either side of mean).

Fig. 7. Coefficient of variance of I/O arrivals on disk space over time for
real and PatIO workloads with the error (%) mentioned above the bars.

316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on October 24,2022 at 19:56:06 UTC from IEEE Xplore.  Restrictions apply. 



different workloads of Cassandra with the throughput of a
sample chosen randomly while running real application
with these 1.000 different workloads. The goal of our PatIO
generated workload is to capture the high-level I/O feature
that persists among multiple workloads of an application.
The throughput results in Fig. 9 shows that the real work-
load does not have a constant throughput over the execu-
tion. Our synthetic workload shows the same wavy nature
of the throughput (see Fig. 9), as opposed to the constant
throughput that is resulted by Naive FIO. We notice that the
throughputs in the first few seconds are different because
the real workload needs to spend some time to initial cache
construction while the generated workload assumes that
data required by the application is readily available. Also,
for a real application, there are more intermediate layers in
I/O stack when compared to PatIO, as seen from Fig. 5,
which increases the initial latency and decreases the initial
throughput. Once the cache is constructed, this latency due
to intermediate layers is hidden in parallel tasks. However,
the initial performance during this short period is often
neglected because it is well known that all storage disks
require some initial time for ramp-up. We also observe that
the real Cassandra result has varied across time, and PatIO

can exhibit similar performance variations.

4.3 Overall Validation
We consider the cross correlation2 to compare the perfor-
mance of running workloads generated by PatIO with
respect to that of running real workloads. We vary the total
number of operations (i.e., transactions) performed to gener-
ate 50 different workloads of each application. Fig. 10 shows
the average of cross-correlations between different real and
the corresponding generated 50 workloads while running
individual applications (e.g., Cassandra and MySQL) and
mixed applications (e.g., MySQL+MongoDB). As a baseline,
we also plot the cross-correlation of the workloads generated
using naive FIO generator. The naive FIO uses the Mean of
different workload characteristics.

Each plot in Fig. 10 shows the correlation of the Disk I/O
distribution, the endurance SSD measured using Write
Amplification Factor, and the performance measured using
throughput, average latency, and tail latency. To measure
WAF during runtime, periodically, we instrument physical
NAND writes of SSD by using the Self-Monitoring, Analy-
sis, and Reporting Technology (S.M.A.R.T) tool commands
such as ”nvme smart-log” and ”smartctl” [34], and instru-
ment the logical writes to each physical SSD from block
layer. We do not propose any SSD firmware amendments in
this work. All the other performance matrices are measured
at the application layer. We observe that the synthetic work-
loads generated by our PatIO are highly correlated with
real ones, with the cross-correlation large than 0.8 for all the
workloads. The naive FIO has a comparatively lower corre-
lation than PatIO because workloads generated by the
naive FIO fail to capture the intrinsic diversities and varia-
tions of real applications.

Table 5 shows that when compared to traditional I/O
replay tools [30], PatIO consumes much smaller amount of
operational storage space and execution time. This is
because PatIO is designed to emulate and regenerate the
characteristics of different real workloads rather than stor-
ing time logs of I/O activities. Also, the architecture of
PatIO bypasses many intermediate I/O stack layers as
shown in Fig. 5, which allows it to execute much faster.

4.4 Scalability of PatIO
One of our contributions is that PatIO is scalable to gener-
ate I/Os over different sizes of storage disks. Thus, we use
the Horizontal Shower (HS) I/O pattern (see Table 3) as
an example to investigate PatIO’s scalability. Fig. 11 shows
I/O characteristics (e.g., I/O distribution and I/O starting
disk offset) and performance (e.g., throughput) when run-
ning the generated HS workload in SSDs with different
capacities, i.e., (a) 480 GB and (b) 960 GB. First, we observe
that the I/O workloads generated by PatIO scale with the

Fig. 8. Read to write ratio over runtime of workloads a) MySQL and b)
Cassandra.

Fig. 9. Throughput variation over time for, a) Real Cassandra workload
and b) Generated Cassandra workload.

Fig. 10. Comparing the cross-correlation between real and synthetic
workloads using a lag of number of samples used for training for tradi-
tional FIO that uses average statistics (Naive FIO), and PatIO.

TABLE 5
Comparing the Operational Storage Space (MB) Consumed and

Execution Time (minutes) for Replay [30], and PatIO

Cassandra MySQL RocksDB

(MB) (min) (MB) (min) (MB) (min)

Replay 64,512 420 48,128 360 90,112 600

PatIO 13.87 9.04 10.42 6.38 18.11 13.51

2. Cross correlation is a measure of similarity of two series as a func-
tion of the displacement of one relative to the other.
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SSD capacity in terms of I/O layout, see the first two rows in
Fig. 11. We also observe that the throughput remains the
same under two different capacities as expected, because
the workload does not saturate the I/O bandwidth on both
SSDs. Summarizing, workloads generated by PatIO behave
similarly as real ones in terms of both I/O characteristics
and performance for back-end storage of different sizes.

5 PRACTICAL APPLICATIONS

Multi-stream SSD [2], [3] is the recent development of the
SSD industry, which allows us to have multiple append
points (erase blocks) at the same time while writing to an
SSD. This advancement assists in placing data on SSDs in a
smart way such that we have less garbage collection and
hence less write amplification factor. Multi-stream function-
alities are added to Linux mainline kernel in 2017 with the
corresponding NVMe drivers available online.3 To take
advantage of the features offered by multi-stream SSDs, it is
challenging to identify the stream IDs. For each write/
update, a stream ID needs to be assigned such that each
stream consists of data with a similar lifetime of being valid.
[6] proposed two automatic stream management algorithms
(auto-stream), named SFR and MQ, to assign stream IDs.
The SFR algorithm utilizes three attributes (i.e., sequential-
ity, frequency, and recency) for stream detection. It main-
tains the rank of data blocks in a table and allocates stream
IDs according to the rank. The MQ (Multi-Queue) algorithm
utilizes access frequency and recency to maintain multiple
queues and uses each queue to represent the rank of data.
The calculated rank is used to assign stream-IDs to data.
In [6], it is observed that the benefit of these stream manage-
ment algorithms varies over different workloads. However,
it is difficult to study what type of applications may be
benefited by which stream assignment algorithm, because
there are many varieties of applications and different possi-
ble combinations of the variable parameter within each
stream assignment algorithm. Moreover, quantifying the
aggregated performance benefit over the wide range of the
performance parameters, such as high throughput, low
latency, high SSD endurance,4 and low write amplification
factor may consume a large amount of resources and
require a lot of time and efforts. As PatIO can mimic the

I/O behavior of the real application with negligible spatial
and temporal overhead (as discussed in Section 4). Thus,
we next discuss how PatIO can be integrated with the
multi-stream SSDs to help study the performance variation
of each stream identification algorithm with respect to vari-
ous applications.

5.1 Integrating PatIOWith Multi-Stream SSDs
PatIO can be used to study the impact of any particular
software, firmware, or hardware improvements over multi-
ple facets such as throughput, latency, and write amplifica-
tion factor. Particularly, first, we install the new firmware
and hardware of multi-stream SSDs in our server. Next, we
ensure that the block layer of the Linux OS is able to read
and write to the multi-stream SSDs through the NVMe
device driver. Finally, we run PatIO on the client-side to
issue I/Os directly to the block layer of the server, as shown
in Fig. 5. We use multi-stream NVMe SSD and no-stream
legacy NVMe SSD of the same capacity of 480 GB. We mea-
sure application performance in terms of average through-
put, average latency, and different tail latencies. We also
measure SSD endurance in terms of the average of write
amplification factor calculated using the ratio of the total
physical NAND writes to the logical application writes
within 5-minute intervals.

5.2 Performance of Auto-Stream
We first compare the performance of the workload gener-
ated by PatIO to the performance of the real workload.
Fig. 12 plots the normalized performance results (i.e.,
(multi-stream - legacy)/legacy) of a multi-stream SSD using
SFR and MQ under both real and PatIO generated work-
load of the Cassandra application. The results using legacy
SSD without streaming are considered as the baseline. We
use the workload configuration of Cassandra as mentioned
in Table 2 for the legacy NVMe SSD (no streaming) and
multi-stream NVMe SSD to obtain the “real” performance
results. The positive bars in Fig. 12 reflect that using a
multi-stream SSD, the measured performance is higher than
that of a legacy SSD and vice-versa for negative bars. Our
analysis across different performance metrics helps us
examine if the generated workload by PatIO shows the
same traits as a real workload. We observe that PatIO is
able to capture the performance trend of either improve-
ment or deterioration exactly. That is, while using a real
application, if using multi-stream SSD with SFR or MQ
algorithm resulted in performance improvement, then

Fig. 11. Effect of drive size: a) 480 GB SSD and b) 960 GB SSD.
Fig. 12. Comparing the application performance while using real and
generated workloads running Cassandra application.

3. https://elixir.bootlin.com/linux/latest/source/drivers/nvme/
host/core.c

4. SSD endurance is the total amount of data that an SSD is guaran-
teed to be able to write under warranty, and high SSD endurance indi-
cates high device lifetime.
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similar performance improvement is also seen with the
workload generated by PatIO. Fig. 12 shows that our gen-
erated workload closely mimics all performance metrics.
For example, WAF decreases with both the auto-stream
algorithms of multi-stream SSDs compared to the no-
streaming legacy SSDs for the real Casandra workload. We
can see the same impact from the PatIO generated Casan-
dra workload. Thus, PatIOis useful to analyze the impacts of
evolving storage technologies such as auto-stream.

We next use PatIO, for running individual I/O patterns
listed in the Table 3 to study in-depth performance benefit of
multi-stream SSDs with SFR and MQ algorithms over legacy
SSDs (no streaming) for each I/O pattern. We also combine
different I/O patterns to emulate various real applications
and study the performance impact. Fig. 13 showswrite ampli-
fication factor for 5 different workloads, such asMySQL, Cas-
sandra, MongoDB, ForestDB and RocksDB, and 13 other I/O
patterns (in Table 3). We observe that multi-stream SSD with
both the SFR andMQ algorithms can reduceWAF for most of
the workloads compared to legacy. Lower WAF means less
internal writes during garbage collection, which leads to bet-
ter SSD endurance. Thus,we say thatmulti-stream technology
may improve SSDs’ lifetime. There are two exceptional I/O
patterns, such as BSVDV and BSHDV, under which using
multi-stream SSD incurs an increase in WAF. More impor-
tantly, our PatIO helps to identify such exceptions. This also
shows that PatIOhas great potential to help the specialist in the
design ofmulti-stream SSDs and auto-stream algorithms to improve
their algorithm, firmware, or hardware in order to handle such
exceptions.

Fig. 14 further indicates that apart from increasing the
lifetime of SSD, multi-stream technology may also help
reduce the latency of workloads. We see that different I/O
patterns have different impacts of streaming on their
latency. Both SFR and MQ achieve lower latency for some

patterns, like HS and SWMJDO. While for some others like
AC and MySQL, SFR does a better job than MQ. In addition,
SFR or MQ might be good for some individual workloads,
but not be that beneficial when we have multiple simulta-
neous workloads, like MySQL+MongoDB.

Finally, we analyze application throughput while using
legacy (no-streaming) SSD and multi-stream SSD. Fig. 15
shows the normalized throughput of SFR and MQ with the
throughput of legacy as a baseline. It depicts that among
different generated application workloads and I/O pat-
terns, most of them have better throughput while operating
on multi-stream SSD than legacy SSD. However, some par-
ticular I/O patterns (like BSVDV, BSHDV, and HO) need
special attention. The workloads with these patterns may
not show a good response to multi-stream technology. They
may need some modifications to improve their underlying
stream assignment. Note that for I/O patterns BSDS, and
Sprinkler the throughput using multi-stream and legacy
SSDs is the same, thus the normalized throughput is shown
in Fig. 15 is null.

5.3 Benefits of Performance Engineering With PatIO
To sum up, PatIO can explore a wide range of different
workloads in a short time compared to the time required in
real application installation, configuration, and running.
PatIO can assist us in comparing different stream assign-
ment algorithms using I/O patterns to evaluate the impacts
of any algorithm, firmware, or hardware modifications on
various performance metrics. Additionally, PatIO can iden-
tify intricate details, e.g., which I/O pattern in a workload
which is responsible for performance degradation.

6 AUTO-TUNING MODULE

Our evaluation found that the benefits of multi-stream SSDs
over legacy varied with the SSD version and the capacity of
multi-stream SSDs. Indeed, [6] presents that both two-
stream assignment algorithms (i.e., SFR and MQ) have a set
of tunable parameters, such as chunk size sector, decay sec
and freq aging sec for SFR and chunk size sector and
adjust ref cnt for MQ. We believe that to achieve optimal
performance, these variable parameters need to be properly
tuned for a change in the physical firmware like the size or
the model of an SSD drive. Furthermore, while identifying
the best value for these parameters, different I/O applica-
tions should be considered to avoid over-fitting to any par-
ticular workload. Additionally, different users may have
requirements on different performance parameters, e.g.,
latency, throughput, or write amplification. Thus, it is also
important to take these user requirements into account

Fig. 13. Comparing WAF of legacy drive with a multi-stream drive using
SFR and MQ stream assignment algorithms.

Fig. 14. Latency Cumulative Distribution Function (CDF) of different
workloads using a legacy SSD and multi-stream SSD with stream
assignment by using SFR and MQ algorithms.

Fig. 15. Normalized throughput of multi-stream drive using SFR and MQ
stream assignment algorithms with respect to legacy.
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when tuning variable parameters. Let the parameters for
any particular algorithm (e.g., SFR) be ak, bk, gk, etc. Exam-
ples of performance parameters that we desire to measure
and improve are 50th, 90th, 99th, and 99.99th percentile of
latency (Dl), WAF (DW ) and throughput (Dt). Weight factor
vi is further used to differentiate the importance of each
performance parameter. Eq. (2) represents the weighted
sum of different performance parameters.

Wj ¼ "v1Dl50 " v2Dl90 " v3Dl99 " v4Dl99:99 " v5DW þ v6Dt

v1 þ v2 þ v3 þ v4 þ v5 þ v6
;

(2)

where, 8i 2 ½0;þ1Þ and vi 2 ½0;þ1Þ. Thus, Eq. (3)
shows that the resultant performance parameters are the
function of the internal algorithm parameters of multi-
stream SSDs.

fðak;bk; gk; . . .Þ ¼ Wj; (3)

where 8 ak 2 [0,Maxa], bk 2 [0,Maxb], and gk 2 [0,Maxg].
Finally, we want to maximize the weighted “Reward

Function” for nworkload as shown in Eq. (4).

Wavg ¼
1

n

Xn

j¼1

Wj: (4)

Objective.
Find the best ak, bk, gk, etc. such that,

g ¼ Max

(
1

n

Xn

j¼1

Wj ¼ fðak;bk; gk; . . .Þ
)
: (5)

6.1 Techniques for Solving Optimization Problem
The simplest approach towards solving this convex optimi-
zation problem is the brute force evaluation of the objective
function by generating all possible ak, bk, gk, etc. This
method gives us the best possible internal parameters,
which ensures the best performance and endurance of the
storage device. However, due to the high complexity of the
problem, such a brute force approach is time-consuming.
Thus, we solve our optimization function by using the
multi-armed bandit model of reinforcement learning to
auto-tune parameter values that can result in a local max-
ima.5 Our agent is an internal algorithm (e.g., SFR) of a
multi-stream SSD, which needs to take actions towards the
best performance by either increasing or decreasing the
value of each variable parameter. For example, SFR has
three-arms, as it contains three variables. The reward of each
action is calculated using the reward function g (see Eq. (5)).
Our agent aims to maximize the reward until it encounters
the local maxima.

We build the required peripheral framework shown in
Fig. 16 with PatIO to enable auto-tuning. This framework is
constructed to explore the best values of tunable parameters
for an auto-stream algorithm, such as SFR and MQ. This
framework particularly uses the same SSD in the legacy

mode (i.e., without stream) and then runs an auto-stream
algorithm in the multi-stream mode to measure the perfor-
mance changes between legacy andmulti-stream. The goal is
to identify the values for variable parameters of that auto-
stream algorithm in order to obtain the best possible perfor-
mance usingmulti-stream SSDs. Our framework uses PatIO
to generate 15

1

! "
+ 15

2

! "
þ . . .þ 15

15

! "
= 215 different workloads

with 15 I/O patterns shown in Table 3 to ensure that the
parameter tuning is not biased or over-tunned towards any
particular workload. The initial value and the minimum and
maximum of each variable parameter are defined in the
“Initial Module Setup”. Then, as shown in Fig. 16, PatIO
reads the constrains and initial values from the initial setup
file and generates a set of different workloads. These work-
loads are run one by one to get their own performance met-
rics that consist of various performance parameters like
throughput, average latency, tail latency,WAF.

6.2 Results
To evaluate the effectiveness of our parameter tuning mod-
ule, we first compare the time consumed in reaching the
convergence point and the maximum reward after conver-
gence while using the brute-force method and our auto-
tune module. We run the experiments five times and take
the average to present the results. Fig. 17a shows that the
time for auto-tuning to reach local maxima is much shorter
than the time required by brute-force to reach global max-
ima. From Fig. 17b, we see that difference in the achieved
maximum reward with brute-force and auto-tuning is not
significant. Thus, using our auto-tune module along with
PatIO, we can quickly improve the performance and endur-
ance of multi-stream SSDs.

We further analyze the variations of the rewards over
runtime when using our auto-tune module. Fig. 18 shows
the average reward value (Wavg) of the initial point (I), two
intermediate points (II, III), and the final converged point
(IV), for SFR and MQ. The variable parameter values for
each of these points are further listed in Table 6. We notice
the overall performance reward (Wavg) increases 60 percent
for SFR and 110 percent for MQ from the initial point (I) to
the final converged point (IV) in Fig. 18.

Fig. 16. Auto-tuning the variables of stream assignment algorithm.

Fig. 17. Comparing Brute-force and auto-tune converged points
(a) Average Time and (b) Maximum Reward.

5. A real-valued function f defined on a domain X, is said to have a
local (or relative) maximum point at the point x* if there exists some
! > 0 such that fðx*) ' fðxÞ for all x inX within distance ! of x*.
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We note that besides PatIO, our auto-tune module is also
complementary to other synthetic workload generators
such as FIO and trace-based I/O generators such as block
trace replay. However, we observe that the internal parame-
ters selected using simple synthetic workloads are not good
enough to obtain better performance when running a real
application on these multi-stream SSDs. On the other hand,
the storage space and time required to use trace-based I/O
generators to configure the internal parameters of multi-
stream SSDs are very high and not always feasible. Thus,
compared with those existing synthetic workload genera-
tors and trace-based I/O generators, our PatIO provides a
more realistic and highly usable solution. Using our auto-
tune module with PatIO, our performance engineering
team was able to significantly reduce the configuration time
of multi-stream SSDs from a couple of months to a couple
of hours. Our novel approaches of (a) benchmarking with
the combined activities of multiple workloads of any appli-
cation and (b) tuning the internal variables of the modern
SSDs to further improve the performance are very impor-
tant to the storage community with new emerging storage
devices.

7 CONCLUSION

To comfort benchmarking in a modern cloud storage with
flash-based SSDs, we develop PatIO, which can generate
I/Os that closely resemble real data processing workloads.
PatIO captures the common characteristics of a group of
similar workloads rather than exactly resembling one partic-
ular workload. PatIO thus can resemble a wide range of
realistic I/Oworkloads. PatIO is also lightweight, as it does
not require to record, store, and retrieve logs w.r.t. the

timestamp of various I/O activities. We developed a GUI
interface for PatIO to make it easy to use. We evaluated
PatIO by comparing workload characteristics and perfor-
mance of synthetic workloads with real workloads on the
same system platform. We currently have 15 different I/O
patterns in our pattern warehouse that are capable of repro-
ducing 1,000+ real workloads. We also deployed PatIO to
two auto-stream algorithms and evaluated the current
advancement of multi-stream technology in terms of its ben-
efits to application performance and SSD endurance. Finally,
we proposed a practical technique to automatically tuning
variable parameters of the existing stream assignment algo-
rithms for any change in storage capacity or SSD models. In
the future, we plan to extend our PatIO warehouse to add
new patterns capturing I/O activities of the other compute
intensive workloads, changes in system parameters, such as
NVM write buffer size, queue depth, and garbage collection
algorithm. We plan to design a module that automatically
identify important common characteristics and accordingly
self-generates new I/O patterns from a set of given work-
loads using machine learning techniques in combination
with statistical computations. We also plan to explore other
global convergence techniques that may incur lower over-
head and guarantee better performance.
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New Performance Modeling Methods for Parallel Data
Processing Applications

JANKI BHIMANI, NINGFANG MI, MIRIAM LEESER, and ZHENGYU YANG, Northeastern
University, USA

Predicting the performance of an application running on parallel computing platforms is increasingly becom-
ing important because of its in!uence on development time and resource management. However, predicting
the performance with respect to parallel processes is complex for iterative and multi-stage applications. This
research proposes a performance approximation approach FiM to predict the calculation time with FiM-Cal
and communication time with FiM-Com of an application running on a distributed framework. FiM-Cal con-
sists of two key components that are coupled with each other: (1) a Stochastic Markov Model to capture non-
deterministic runtime that often depends on parallel resources, e.g., number of processes, and (2) a machine-
learning model that extrapolates the parameters for calibrating our Markov model when we have changes in
application parameters such as dataset. Along with the parallel calculation time, parallel computing platforms
consume some data transfer time to communicate among di"erent nodes. FiM-Com consists of a simulation
queuing model to quickly estimate communication time. Our new modeling approach considers di"erent
design choices along multiple dimensions, namely (i) process-level parallelism, (ii) distribution of cores on
multi-processor platform, (iii) application related parameters, and (iv) characteristics of datasets. The major
contribution of our prediction approach is that FiM can provide an accurate prediction of parallel processing
time for the datasets that have a much larger size than that of the training datasets. We evaluate our approach
with NAS Parallel Benchmarks and real iterative data processing applications. We compare the predicted re-
sults (e.g., end-to-end execution time) with actual experimental measurements on a real distributed platform.
We also compare our work with an existing prediction technique based on machine learning. We rank the
number of processes according to the actual and predicted results from FiM and calculate the correlation be-
tween the actual and predicted rankings. Our results show that FiM obtains a high correlation in the range of
0.80 to 0.99, which indicates considerable accuracy of our technique. Such prediction provides data analysts a
useful insight of optimal con#guration of parallel resources (e.g., number of processes and number of cores)
and also helps system designers to investigate the impact of changes in application parameters on system
performance.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Net-
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1 INTRODUCTION
High-Performance Computing (HPC) systems are ubiquitous in processing data for myriad appli-
cations involving huge datasets. How to achieve the best performance with an optimal con!gura-
tion of parallel resources (e.g., number of processes and number of cores) is a challenging research
problem. Currently, researchers run their application codes on a representative dataset, !x appli-
cation parameters, and try di"erent con!gurations of parallel resources to determine the optimal
one. However, if we want to !nd optimal application parameters, then the investigation needs to
consider all possible combinations of application parameters and parallel resources. Such an inves-
tigation becomes very expensive, requiring a signi!cant amount of time and hardware resources.
Besides, on parallel computing platforms, using more parallel resources does not always guaran-
tee performance improvement. Hence, it is bene!cial if we can approximate the optimal per-
formance in terms of parallel resources and application parameters. The prediction of expected
performance before the porting of an actual implementation on a hardware platform can save sig-
ni!cant time and hardware resources spent in experimentally !nding the optimal performance.
The emergence of huge datasets as workloads and parallel computing has emphasized the impor-
tance of predictive analysis, and performance bottleneck identi!cation. Designing e#cient predic-
tion tools thus becomes critically important to system designers and application programmers [24].

As motivation, we show an example with an iterative k-means clustering application running
on a framework using Message Passing Protocol (MPI [19, 35]) in Figure 1. We observe that the cal-
culation time decreases when we have more parallel MPI processes; however, the time to commu-
nicate data increases. Such an observation implies that speeding up parallel calculation time may
not guarantee overall application speed-up. Also, the decrease in calculation time levels o" after
70 parallel processes. Increasing the number of parallel processes further consumes more system
resources, but may not improve overall application runtime. Thus, the capability of predicting such
an optimal point (e.g., 70 in Figure 1) is vital to system designers for making good design choices.

In this article, we develop a new performance modeling approach, named FiM, to estimate both
computation and communication times of iterative, multi-stage data processing applications us-
ing MPI. Each node is a CPU that has multiple cores, and each core can support multiple MPI
processes. One of the nodes accesses an application dataset and determines the distribution of
processing among the processes of other nodes. All these nodes then perform parallel computa-
tions using multiple processes. Such a parallel phase is known as one stage in our model. At the
end of each stage, all processes synchronize to decide on the termination or launch next stage.
In this research, we concentrate on predicting parallel processing time of such an iterative and
multi-staged application running with global synchronizations. One of the key innovations in our
work is that FiM relies only on small datasets for training but can predict the execution times for
larger datasets. More speci!cally, this article aims to answer the following questions through our
prediction models.
• Can we quickly estimate the parallel calculation and communication times of an application

to identify the optimal number of processes?
• Can we use small datasets as training to predict performance of applications operating in

parallel on large datasets?
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Fig. 1. Latency variation across di!erent number of parallel processes for (a) calculation time and (b) com-
munication time.

• How does the number of processes impact calculation and communication time?
• Is the application communication or compute bound?

To answer these questions, we introduce FiM, which consists of two main components: (1) FiM-
Cal and (2) FiM-Com. The goal of FiM-Cal is to predict the calculation time by using a stochastic
Markov model and a machine-learning model. The stochastic Markov model is built using the
probabilistic technique to estimate the impact of an increase in the number of parallel processes.
We !rst develop the base case of the parallel paradigm and then derive a generic model that applies
to any number of parallel processes as well as any number of dependent stages (e.g., iterations)
of an application. The base case of the Markov model is calibrated using the minimum number
of system parameters. The machine-learning model is then designed to extrapolate the calibrated
parameters for the Stochastic Markov model to adapt to changes in application parameters such
as datasets.

The goal of FiM-Com is to predict the communication time using a set of simulation queuing
models. Here our motive is to get a quick estimate using a simpli!ed prediction model. Such an
estimate of communication time along with calculation time can provide instant insight to users.
Thus, our FiM approach can use the minimum possible calibration parameters to quickly predict
the expected computation and communication time as well as the optimal number of processes
for platform con!guration. While comparing actual and predicted time, the worst prediction error
of the overall application runtime by FiM is observed to be less than 20%. The source code of our
calculation and communication time prediction model is available at GitHub (https://github.com/
bhimanijanki/FiM). A preliminary version of the article, titled “FiM: Performance Prediction for
Parallel Computation in Iterative Data Processing Applications,” was published in Proceedings of
the IEEE International Conference on Cloud Computing (CLOUD’17) [8].

The remainder of this article is organized as follows. We present the two FiM components in
Section 2 and Section 3.2, respectively. We evaluate our models on a distributed memory platform,
see Section 4. In Section 5, we discuss some related work. Section 6 presents our conclusions and
future works.

2 FIM-CAL: CALCULATION PREDICTION
In this section, we present FiM-Cal, an analytical approach to predicting the calculation time of
an application running on a distributed multi-process platform. FiM-Cal consists of two key com-
ponents: a stochastic Markov model and a machine-learning model. We !rst use the stochastic
Markov model to represent the computational processing of an application in a parallel MPI frame-
work. Then we design a machine-learning algorithm to estimate the parameters related to the sys-
tem for calibrating our stochastic Markov model. This parameter extrapolation enables our model
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Table 1. Notations Used in FiM-Cal

Notation Description
S i

j Markov chain state with i active and j passive processes
Psi Stage completion probability of ith stage
Pi j State transition probability of moving from i active to j active processes
Pact Probability P11 of 1 process model
Pp2a Probability P01 of 1 process model
Pa2p Probability P10 of 1 process model
Ppass Probability P00 of 1 process model
F Frequency (GHz)
TC Total cycles
SC Total stall cycles
U Utilization per process
Ti Total time taken by stage i
α Sensitivity constant
β Regression constant
yi Dependent variables
!Xi Vector of independent variables

Fig. 2. Prediction procedure of FiM-Cal.

to predict an application’s calculation time when we have a di!erent number of parallel processes
or variable application parameters (such as dataset size) without any system state instrumentation.
Table 1 lists the notations used in this article for FiM-Cal. Figure 2 shows the overall work"ow of
our proposed FiM-Cal. We will introduce the details of each component in Figure 2 in the remain-
der of this section.

2.1 Stochastic Markov Model
Our stochastic Markov model is designed to model computational processing for an application
running on a system with parallel multi-core CPUs deployed using MPI. Such a stochastic model
allows us to capture a non-deterministic runtime that often depends on parallel resources, e.g.,
number of processes. If there exists a global synchronization call in an application, then all pro-
cesses wait until the barrier. The processing of an application is partitioned into multiple stages
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Fig. 3. Modeling (a) the nase case: single process with single stage and (b) generic case: two processes with
multiple stages.

with respect to this global synchronization, such that each stage corresponds to a parallel phase
until all processes have completed their tasks and are in an active state to proceed to the next stage.
In this section, we !rst introduce our base case, which models a single stage for a single-process
system, and then show its extension to the generic case with multiple processes and multiple
stages.

2.1.1 Base Case. The base case model is built to represent a single process for a single stage
application, see Figure 3(a). In our model, each process is considered to be either in active or passive
state. As shown in Figure 3(a), when only a single process runs in the computing platform, we have
two states for a stage such that state S1

0 represents that one process is active while S0
1 represents

that one process is passive. We also introduce transition probabilities (e.g., Pact , Pa2p , Ppass , Pp2a )
of switching between two states or staying in the same state, as well as the stage completion
probability (Ps1) of transferring from one stage to another. In the active state, the process performs
constructive work and typically changes from the active state to the passive state when it is blocked
by an event that would create a latency stall. Such a latency stall might be caused due to a cache
miss that takes many CPU cycles. In this work, we do not model memory latencies, contentions,
inter-dependencies and deadlocks individually for each process but rather treat the combined e"ect
as a process remaining passive.

The probabilities in the base case model are parameterized by instrumenting the system details,
which is further used to derive the probabilities of the generic case. To parameterize the proba-
bilities of the base case, we use the perf tool [16] to instrument the required data, including
the hardware clock rate (F ), system CPU utilization factor per process (U ), total number of cycles
required for execution (TC), and stall cycles (SC). In particular, we run an application with a single
stage on a single process and use the perf stat command to collect and report the required data as
listed above.

In the base case (i.e., single-process and single-stage), the probability to remain in the active state
(Pact ) is primarily determined by the proportion of time that the process is performing useful work.
Therefore, we use Equation (1) to get Pact ,

Pact = U , (1)

where U is utilization per process. As shown in Figure 3(a), when the process is in an active state
(i.e., S1

0), there are three possible events for its next transition: (1) Remain in S1
0 with probability

Pact , (2) transition to with probability Pa2p , and (3) complete the stage with probability Ps1. Now,
if there areTC total cycles to be processed for the given dataset, then processing is completed only
after completing the last cycle. This gives the probability of completion as 1/TC . Probability Pa2p
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for the process to transit to the passive state can then be calculated as shown in Equation (2),

Pa2p = 1 − (Pact ) − (1/TC ). (2)

The probability of the process remaining passive (Ppass ) is primarily determined by the ratio of
stall cycles (SC) to total cycles (TC) as shown in Equation (3),

Ppass = SC/TC . (3)

We can determine the probability of switching from passive to active (Pp2a ) by applying the control
!ow equation to the passive state (S0

1) as shown in Equation (4),

Pp2a = 1 − (Ppass ). (4)

We "nally get the stage completion probability (Ps1) by applying the control !ow equation to the
active state (S1

0) as shown in Equation (5),

Ps1 = 1 − (Pact ) − (Pa2p ). (5)

Note that, for the base case with one stage and only one possible active phase, Ps1 is the same
as 1/TC , because all active cycles can be spent only in one active state (S1

0). Later, in generic cases,
we discuss the calculation of Ps1, which is then not the same as 1/TC .

2.1.2 Generic Cases. Now we consider generic cases where we can have multiple processes
operating on an application with multiple stages. This generic behavior can be modeled as an
extension of the base case. The processing of an application may have multiple inter-dependent
parallel stages. For example, an iterative application with 500 iterations can be divided into 500
parallel stages such that each stage represents an iteration and is entered only after the completion
of all prior stages. Thus, the "rst stage corresponds to the parallel calculation phase by all processes
in the "rst iteration and is followed by the remaining stages in the same order. In general a simple
non-iterative and single stage application can be treated as having 1 iteration and 1 stage while
predicting its runtime using our proposed technique.

Figure 3(b) shows an underlying Markov model for an application with two processes using n
stages, each with two parallel processes. The entire work!ow of an iterative, multi-stage, multi-
process application can be mapped with a chain of n parallel stages, and Ps1, Ps2, . . ., Psn , are
the completion probabilities for all n stages, see Figure 3(b). Note that these stage completion
probabilities are non-uniform and dependent on all the completion probabilities of prior stages as
well as intra-state transition probabilities of that stage. Also for every stage, all its state transition
probabilities (Pi j ) depend on the completion probability of the prior stage. Thus, the value of Pi j
in a stage is di#erent from that of Pi j in another stage even for the same i and j. Furthermore, a
single stage can only complete when all of its processes are active, i.e., not being blocked by any
events. A calculation phase of an application is completed when tasks assigned to all processes are
completed in the last stage. Thus, the completion probability of an application is Psn .

To model an iterative, multi-stage paradigm with multiple processes, we use multiple states
within each stage to represent activities (active or passive) of all processes. Consider t processes
with i active processes and j passive processes, where 0 <= i <= t , 0 <= j <= t and t = i + j. Each
stage consists of a total of M = t + 1 states. Thus, the transition probabilities of jumping from any
one of these M states to other states or itself can be divided into three types: (1) probability to
remain in the same state (e.g., P22, P11 and P00 in Figure 3(b)), (2) probability to increase active
processes (e.g., P01, P12, P02 in Figure 3(b)), and (3) probability to increase passive processes (P10,
P21, P20 in Figure 3(b)). Given M states, we have M probabilities to remain in the same state, ∑M−1

i=1 i
probabilities to increase active processes, and ∑M−1

i=1 i probabilities to increase passive processes.
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Thus, the total number of probabilities to be calculated for a single stage with M states is equal to
M + 2 ∑M−1

i=1 i =M2.

2.1.3 Solving the Generic Model. We solve such a generic Markov model and derive its probabil-
ities by relating them to the preliminary transition probabilities of the base case. That is, once we
have transition probabilities for M = 2 (base case), we can calculate all probabilities for a generic
case with M > 2. In Reference [27], a mathematical relation between the transition probabilities of
a Markov model with two states and a Markov model with more than two states has been derived.
We use their method to relate transition probabilities of the cases with M = 2 and M > 2. Initially,
base case probabilities are calculated.

Speci!cally, let us consider to derive generic model probabilities for an application with M =
3 from the base case probabilities of M = 2. For M = 3, the application must have two parallel
processes (see Figure 3(b)). At any given time during the execution, there are three states (M = 3):
(1) Both of these processes can be active (state S2

0), (2) one process can be active and the other
passive (state S1

1), and (3) both can be passive (state S0
2). The probability of two active processes

to continue as active is P22 = Pact * Pact . Similarly, the probability of two passive processes to
continue as passive is P00 = Ppass * Ppass . If one process that was active in previous stage remains
active and the other process that was passive remains passive, or if the active process becomes
passive and the other process that was passive becomes active, then in both of the above cases the
model stays in state S1

1 . Thus, the probability of such state transition is P11 = (Pact * Ppass ) + (Pa2p
* Pp2a ). P01 is state transition probability from S0

2 (i.e., both the passive processes) to S1
1 (i.e., one

active process and the other passive process).
Same as above, the state transition probabilities for any M can be derived. These derived equa-

tions can be mathematically reduced to a more generic form. Equations (6) to (8) give the state
transition probabilities for M > 2, where i corresponds to the number of active processes in the
previous state and j corresponds to the number of active processes in the targeted state. For ex-
ample, in Figure 3(b), P21 indicates the state transition probability of moving from a state with
2 active processes (S2

0) to a state with 1 active process (S1
1). Substituting appropriate i and j in

Equations (6) to (8) for M = 3, all the probabilities explained and derived above for 2 processes
such as P00, P11, P22, P01, P02, P12, P10, P20, and P21 can be obtained. These equations represent the
stochastic process of a Markov chain and can be calculated by mathematical induction after solving
the Markov chain with a !nite number of states. Particularly, as shown in Equations (6) to (8), we
use the probabilities (Pact , Pa2p , Ppass , and Pp2a ) that are obtained by the base case (Section 2.1.1)
to calculate the state transition probabilities in generic cases.

If i == j, then
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Additionally, after capturing the state transition probabilities of the !rst stage, we calculate the
stage completion probability Ps1 using Equation (9) and then use Ps1 as an incoming probability for
calculating the state transition probabilities of stage 2, and so on. This chaining process captures
an iterative and multi-stage application running with multiple processes. Finally, Psn for the nth
stage is calculated by Equation (9),

Psn = P (Xs = n | Xs−1 = n − 1)

= 1 −
j=i∑

j=0
(Pi j | Xs−1 = n − 1)

for i = Max (#Processes ).

(9)

We further use Equation (10) to calculate the time (Tn ) spent in performing parallel calculation
for n stages, given the completion probability (Psn ) and CPU frequency (F ),

Tn =
1

(Psn ).(F )
. (10)

Consequently, our stochastic Markov model can predict the computation time required to process
any particular dataset using di"erent levels of parallelism such as di"erent number of processes
in MPI. Next, we present our machine-learning technique that assists to extrapolate the data (such
as, F , U , TC , and SC) required for calibrating the base case model.

2.2 Machine-learning Model
Our stochastic Markov model allows us to predict the calculation time of an application when we
have a di"erent number of processes in the system. However, the required hardware parameters
(i.e., TC , SC , U ) need to be instrumented for every new dataset and a new setting of application
parameters. This limits the scope of the model to predict for a particular set of datasets and !xed
application parameters. Most analytical models su"er from this lack of #exibility. Therefore, we de-
velop our machine-learning model to avoid additional instrumentation for a new dataset or a new
set of application parameters. For a new application, we need !rst to train to derive a new model.
However, for new sets of application parameters and new datasets of the same application, the de-
rived model can be used to predict the runtime. To reduce the complexity of the machine-learning
model, we also assume that the application calculation time is dependent on the fewest possible
hardware parameters. Our evaluation results, shown in Section 4, demonstrate the feasibility of
this assumption by showing the fairly accurately predicted results obtained by our approach that is
good to give a quick approximation. Here we introduce a two-stage machine-learning model that
emulates hardware behaviors without performing actual instrumentation for required hardware-
related data. Such a hybrid emulation of hardware is the key to allowing the approach to be able
to predict parameters for datasets with sizes much larger than those of the training datasets.

2.2.1 Regression Mapping. The focus of regression is to !nd the relationship between a de-
pendent variable (such as the hardware parameters that we want to emulate) and one or more
independent variables (such as application parameters and datasets). This analysis estimates the
conditional expectation of a dependent variable given values of all related independent variables.
We !nd that the generalized linear regression model performs the best when compared to others
(quadratic, Poisson model, and gradient decent) for modeling all desired hardware parameters (U ,
TC , and SC). We show the validation of a linear regression model in Section 4.3.

The linear regression equation for learning variable yi is shown in Equation (11), where !Xi is
a vector of p-independent variables related to application parameters and datasets, !βi consists of
a vector of p + 1 constants, and n is total number of scalar-dependent variables. Suppose for the
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k-means application, elements of !Xi would consist of the number of desired clusters (K), the num-
ber of iterations (I), and size (N). For our model, we have three scalar-dependent variables, i.e.,
U , TC , and SC , which can be predicted after building this linear regression model. Thus, we have
three equations for y1, y2, and y3 with n = 3,

yi = βi0 + βi1xi1 + · · · + βipxip

= !βi (1 + !Xi
T

), for i = 1, 2, . . . ,n.
(11)

This linear regression model is used to !nd values for constants !βi using the training data for
which both dependent variables and independent variables are known. We obtain the regression
curve and regression constants !βi by building our machine-learning model in MATLAB.

ALGORITHM 1: Calibration of α
1 Input: ϵ , τ yi , !Xi ,Output: α
2 Initialize: !βi , TC , SC , U using regression mapping, α = 0 and iter = 0
3 if 0 <= U <= 1, TC >0, SC >0, SC <TC then
4 Predict comp. time using stochastic Markov model
5 Calculate RMS error (Actual, Predicted)
6 if iter == 0 then
7 Calculate error (Actual - Predicted)
8 Decide OP = + or -, depending on positive or negative error
9 if RMS error <τ then

10 return
11 else
12 α = α {OP} ϵ
13 iter ++
14 Calculate TC , SC , and U using Equation (12)
15 goto line 3
16 else
17 Neglect bad values
18 goto line 4

2.2.2 Iterative Improvement Model. We found non-negligible errors between the actual and pre-
dicted calculation times when we pair the linear regression model described above with our sto-
chastic Markov model, to predict calculation time of large datasets based on small training datasets.
To handle this issue, we develop an iterative improvement model that uses a sensitivity parameter
α to tune the constant factors !βi with respect to the predicted results (i.e., calculation time) of our
stochastic Markov model as shown in Equation (12). Note that in this equation the constants in
vector !βi are obtained from the regression between hardware parameters and application param-
eters, but constant α is obtained by using both Markov model and regression model as described
in Algorithm 1,

yi = α (βi0 + βi1xi1 + · · · + βipxip )

for i = 1, 2, . . . ,n. (12)

ACM Transactions on Modeling and Computer Simulation, Vol. 29, No. 3, Article 15. Publication date: June 2019.



15:10 J. Bhimani et al.

Initially, we use hardware parameters (U , TC , and SC) and application parameters of training
data with regression mapping (Equation (11)) to obtain constants of vector !βi . The hardware pa-
rameters are passed to our stochastic Markov model to predict calculation time. In the !rst itera-
tion, the error between actual and predicted time is used to decide the adjust direction ofα , see lines
6 to 8. That is, if the actual value is greater than the predicted one, then the algorithm increases α
and vice versa. In the following iterations, Algorithm 1 increases or decreases α by a small value
ϵ (e.g., ϵ = 1e-5), and the hardware parameters (U , TC , and SC) are predicted using constants of
vector !βi and α with Equation (12) (see line 14). Then the computation time is predicted using
U , TC , and SC as the inputs to our stochastic Markov model (see line 4). The adjustment process
continues until the root mean square (RMS) error becomes smaller than a prede!ned threshold
(e.g., τ = 0.01), see line 9. The value of τ needs to be set such that we avoid under!tting as well
as over!tting the training data. From our experiments, we observe that τ = 0.01 is a good value
on an average across di"erent choices of applications and training datasets. Thus, the algorithm
adjusts the value of α until the predicted calculation time becomes close to the actual time. We
tune α while training the model and then use the exact tuned α value throughout the prediction
stage. Note that our machine-learning model is used to calculate the constants of vector !βi and α
in the training phase, which are after that used for extrapolation of hardware parameters.

In summary, Figure 2 shows the overall procedure of our prediction model FiM-Cal, which in-
cludes the training and prediction phases. In the prediction phase, our machine-learning model
extrapolates the dependent variables (such as hardware parameters: SC , TC , U ) for new datasets
and new sets of application parameters. These predicted hardware details can then be used as an
input to our stochastic Markov model to predict the calculation time.

3 FIM-COM: COMMUNICATION PREDICTION
Apart from computation time [7, 8], applications spend some time in the communication of data to
various processes. With the increase in the number of processes, this communication time keeps
increasing [37]. Therefore, it is essential to roughly estimate communication time, i.e., the runtime
of data transfer. For applications running on a distributed multi-process system, the data trans-
fer time for processes lying on the same node is di"erent from that between processes lying on
di"erent nodes. The framework considered in this work consider all inter-node communication.

3.1 Communication Pa!erns
It is non-trivial to predict communication time, due to various communication patterns and the
non-deterministic latency of the communication network. There exist many, more complex mod-
els to predict accurate network communication time [10, 20, 23, 30], but here our motive is to get
a quick estimate using a simpli!ed prediction model. In this work, we investigate three types of
collective communication patterns including downlink (scatter and broadcast) and uplink (gather).
We build di"erent queuing models to capture those patterns when running a data processing appli-
cation such as k-means clustering on a multi-process system with MPI. Because the data transfer
time along with computation time is signi!cant, our model aims to provide very quick rough es-
timates of communication time to make fast decisions.

Speci!cally, we consider communications from the one to many nodes as the downlink. Such a
downlink communication can have either the scatter pattern or the broadcast pattern. Under the
scatter pattern, the data are distributed among the multiple nodes by the one node such that each
node gets a unique part of the data. Under the broadcast pattern, the data are broadcast to all nodes,
and each node receives the same copy of the data. The scatter communication is usually undertaken
by communicating data to one after another process in MPI. We also consider communications
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Fig. 4. !euing models for the (a) sca"er, (b) broadcast, (c) gather communication pa"erns.

from multiple nodes to the one node as the uplink gather pattern. When gathering, each node
sends their own data to a shared bu!er, and the managing node reads those data one by one from
the bu!er.

3.2 Communication Models
We develop a set of queuing models to capture these three collective communication patterns.
Such queuing models can give a high-level abstraction of real communication systems in terms
of packet arrival rates, delay/waiting time, and packet transfer rate, which helps to estimate the
overall data communication time. Note that we try to keep these queuing models simple to enable
fast estimation.

Figure 4 presents our queuing models to represent the scatter, broadcast, and gather patterns,
respectively. Typically, communication time depends on various network properties such as ini-
tialization cost, maximum network bandwidth, network load, and the amount of metadata (e.g.,
headers, acknowledgments, and "ags). Therefore, in each of these models, we use four components,
Data transfer (D), Metadata (M), Cost of network initialization (C), and Receive (R) in Figure 4, in
series to capture di!erent properties of network communication. Each job in the queue of D, M, C,
and R represents a data packet e.g., a pixel for k-means clustering.

First, D is used to capture the actual data transfer rate through the communication network,
where mean service rate µ1 indicates the available network bandwidth. We assume that all data
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packets are available in memory. Thus, all jobs are assumed to wait in the queue of part D before
data transfer begins.

The second part M, in the models of Figure 4 captures the e!ect of metadata on overall commu-
nication time. Such metadata can include headers, acknowledgments, addresses, o!sets, padding,
and "ags that need to be transferred over the network along with the original data packets as part
of the network protocol. The time consumed by such metadata transfers depends on the number
of actual data packets and instantaneous network load. To capture this, we design component M
with a variable mean service rate µ̃2, which depends on the instantaneous queue length of part M.
The arrivals to this queue are the departures from part D.

Part C in the model represents network initialization. Usually, the cost for network initialization
is a network latency that is added to overall communication time. We use a delay server with
mean service rate µ3 to emulate such network latency. The last part of our models (R in Figure 4) is
used to estimate the data fetching time on the receiver side. We use part R to capture the receiving,
while the #rst three parts (D, M, and C) capture the sending. We assume that the receiving process is
homogeneous across di!erent nodes. Therefore, multiple servers and queues are used to represent
multiple receivers, and the mean service rate of each server is µ4.

We present the corresponding models for scatter and broadcast in Figure 4(a) and (b), to predict
communication times for the downlink, i.e., from the one node to multiple nodes. Under the scatter
pattern, the one node sends di!erent pieces of data to other nodes one by one. We use the round
robin policy to distribute jobs into queues in part R, and thus there is only one solid arrow in R to
indicate data transfer to one process at a time, see Figure 4(a). In Figure 4(b), there are multiple
solid arrows to R, which represents that we duplicate jobs (data points) and distribute them to all
queues of R in parallel to capture the broadcast pattern. The third model, shown in Figure 4(c),
represents the gather pattern of the uplink communication, where multiple nodes send their data
to one node. We have multiple servers running in parallel in parts D, M and C. The First-In-First-Out
(FIFO) discipline is used in the last queue to emulate data fetching by the managing node.

3.3 Communication Model Calibration
The main tasks in communication model calibration are (1) to determine an appropriate queuing
model and (2) to derive service processes for all servers in the model based on its collective com-
munication pattern. Our models only need to be calibrated when we have a new application or
run on a new hardware platform. We then leverage the knowledge of actual transfer processes on
a new platform to calibrate the service rates of all servers in the models. The calibrated models
can be used directly to predict communication times for new datasets, new application parameters
(e.g., number of iterations in k-means) and di!erent number of MPI processes.

In particular, we calibrate µ1 using the maximum network bandwidth obtained from the pro-
vided network con#guration of a cluster (e.g., 10Gb/s backplane). We observe from conducting
experiments on multiple applications for both 10Gb/s and faster 56Gb/s TCP/IP backplane that
the actual data transfer rates are often within 90% to 100% of the maximum network bandwidth,
with a uniform distribution. Therefore, we calculate the lower bound (ζmin ) and the upper bound
(ζmax ) of transfer rate per unit job (i.e., each data point) and derive the service rate µ1 in part D
using Equation (13),

µ1 = Uniform(ζmin , ζmax ). (13)

To get the transfer time of the metadata, we #rst measure the actual total communication time
for sending a unit job (a single data point) and then deduct the measured runtime of the other three
parts, i.e., network bandwidth, network initialization, and receiver’s data fetch time. We #nd that
the derived transfer rates of metadata are logarithmic to the instantaneous network load (refer
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Table 2. Platform Configurations Labelled as C1 to C5 (2-E52670—Two
Multi-core, Hyper-threaded Intel Xeon E5 2670 CPU’s @ 2.60GHz and 256GB of
RAM) (2-E52650—Two Multi-core, Hyper-threaded Intel Xeon E5 2650 CPU’s @

2.00GHz and 128GB of RAM)

C1 C2 C3 C4 C5
CPU 2-E52670 2-E52670 2-E52670 2-E52670 2-E52670

2-E52650 4-E52650 6-E52650 8-E52650
Cores 32 64 96 128 160

Network 10Gb/s Ethernet backplane TCP/IP
Shared FS NFS

OS Linux

Section 4.3). Therefore, we use Equation (14) to generate µ̃2 for metadata, where χ represents the
number of jobs currently waiting in the queue of M. The tilde on µ2 represents the variable mean
service rate of component M, which depends on the instantaneous queue length of part M (χ ) to
symbolize variance as explained above,

µ̃2 = loд(χ ). (14)
In part C, µ3 captures the network initialization latency using a delay server. Speci!cally,

the sending node !rst activates itself (comselfcreate) and then activates the receiving nodes
(comworldcreate). The MPE tool [19] is used to collect the mpilog log !les. We observe that the
initialization latency follows an exponential distribution (refer Section 4.3). Thus, we use Equa-
tion (15) to get the service rate µ3, where η is the mean of the service rate distribution,

µ3 = exp (η). (15)
Finally, we observe that the data receiving rate is exponentially distributed (refer Section 4.3).

Additionally, we consider a multiplicative factor ϕ to model the number of receivers that simulta-
neously fetch data. For example, ϕ is equal to one under the scatter pattern, since only one node
can receive data at any time. For the broadcast pattern, ϕ is equal to the number of nodes. Thus,
Equation (16) is used to draw µ4 for all the servers in part R, where ψ is the mean service rate
distribution,

µ4 = ϕ ∗ exp (ψ ). (16)

4 EVALUATION
We evaluate our FiM prediction approach (a combination of FiM-Cal and FiM-Com) by comparing
the predicted results (e.g., end-to-end execution time) with actual experimental measurements
on a real distributed platform. We also compare our prediction approach with an existing work,
named RBASP [5], which is a regression-based approach to extrapolate execution time. In our
evaluation, we consider the end-to-end execution time of data processing applications as the sum
of the runtime spent in communicating the required data to parallel processing units, performing
the calculations in parallel, and transferring the results back to the managing node. We assume that
no overlap exists between the calculation and communication in the application implementation.
We use the Discovery Cluster at Northeastern University [1] to build our experimental platform.
Table 2 describes !ve parallel platform con!gurations we used in our evaluation, where each CPU
belongs to di"erent nodes.

We evaluate our approach with six NAS Parallel Benchmarks (NPB—version NPB3.3.1-MPI) [2],
with the large size dataset of Problem Class C. Table 3 lists the six benchmarks we used in our
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Table 3. NPB Benchmarks

BT Block Tri-diagonal solver Compute Bound
EP Embarrassingly Parallel Compute Bound
SP Scalar Penta-diagonal solver I/O Bound
LU Lower-Upper Gauss-Seidel solver I/O Bound
IS Integer Sort Memory Bound

CG Conjugate Gradient Memory Bound

evaluation. For each benchmark, we train our model using three small size datasets of Problem
Class S. Note that we use the trained model to predict the performance for datasets of Problem
Class C, which are much larger than the datasets of Problem Class S. We reprogram the NPB bench-
marks to implement iterative, multi-stage paradigm versions in MPI using C. The time spent for
computation in all iterations (or multiple phases) is the total computation time. For each iteration,
we measure the time from the start of parallel processes to the completion of all the processes. We
also evaluate FiM with two iterative data processing applications: k-means [6] and Pagerank. For
each of these applications, we run experiments on 15 di!erent datasets and choose one dataset as
a representative to show the results, i.e., NL (the large dataset with 13 million data points). For
both applications, we train our model using three small datasets, i.e., NS (the small datasets each
with 3 thousand data points).

k-means Clustering (KM): Our k-means clustering implementation [6] takes color images as in-
put datasets. We cluster pixels in an image based on "ve features, including three RGB channels
and the position (x, y) of each pixel. We choose random data points to initialize each cluster cen-
troid and then use the Euclidean distance to calculate the nearest cluster for each data point. The
parameters of k-means include a number of desired clusters (K ), number of iterations (I ), and size
of input dataset (N ).

Pagerank (PR): The Pagerank application takes a network of directed vertexes and edges as an
input dataset. The output of the Pagerank application is a probability distribution representing
the weights of each vertex (page). We choose a damping factor of 0.85 and initialize all vertices
(pages) with the same probability weights. The parameters of this application include a number
of vertexes (V ), number of iterations (I ), size of input dataset (N ), and network nature (dense or
sparse).

4.1 Performance Evaluation
In our evaluation, we consider a regression-based approach named RBASP [5] to compare with
our FiM approach. RBASP is well known for its simplicity and accuracy in extrapolating execution
time of multi-process applications. In our FiM approach, we combine our stochastic Markov mod-
eling with machine-learning regression to predict calculation time and use our queueing models to
predict communication time. Our prediction model with this combination of popular techniques
helps to predict accurately in most cases and gives a quick estimation. We choose RBASP to com-
pare our prediction accuracy, because, similarly to FiM, it also gives a quick prediction and can
estimate runtime of datasets larger than the training datasets. RBASP is a pure regression-based
approach; unlike FiM, it directly estimates total time (calculation + communication) using regres-
sion. RBASP model predicts the execution time (y) of a given parallel application on p processes
by using several instrumented runs of an application on q processes, where q ∈ {1, . . . ,p0} and
p0 < p. By varying the values of independent variables (x1,x2, . . . ,xn ), this model aims to calcu-
late coe#cients (β0, . . . , βn ) by the linear regression "t for loд2 (y) (Equation (17)), where д(q) can
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Fig. 5. Actual and predicted execution time using FiM and RBASP with the relative prediction error listed
on top of each bar.

Table 4. Summary of Results for All Applications (Rel. Er.-Relative Error) (Act.-Actual)
(App.-Application) (Opt.-Optimal)

Best Rel. Er. % Average Rel. Er. % Worst Rel. Er. % Opt. # MPI Process
App. RBASP FiM RBASP FiM RBASP FiM RBASP FiM Act.
BT 1.98 1.04 2.17 10.95 66.45 18.07 136 360 360
EP 0.44 2.13 0.64 5.31 76.74 15.32 309 252 248
SP 1.98 0.21 16.55 1.61 94.21 19.14 212 64 56
LU 0.14 0.06 23.48 6.01 79.15 26.88 82 28 20
IS 1.73 1.3 22.59 6.75 90.94 34.36 70 70 70

CG 2.63 2.99 26.17 5.32 77.65 40.73 156 102 102
PR 2.02 0.91 44.48 6.81 57.65 31.46 21 56 64
KM 1.61 0.42 9.37 1.98 30.43 10.87 64 192 192

be either a linear function or a quadratic function,
loд2 (y) = β0 + β1x1 + · · · + βnxn + д(q). (17)

While reproducing the RBASP model, we use p0 = 1, 2, 4 as the training set and predict the
performance with two forms of д(q) function as suggested in Reference [5]. The RBASP approach
directly predicts the execution time using regression, which requires performing training with
data points processed for a di!erent number of multiple processes. In contrast, FiM extrapolates
the hardware parameters for a given computing platform and then uses these hardware parameters
as the inputs to the stochastic Markov model for predicting execution time for a di!erent number
of processes. FiM does not need to be trained again when we change the number of processes used
in a given computing platform.

Figure 5 shows the predicted results using RBASP and FiM for six NPB benchmarks and two
iterative data processing applications. We run these experiments on the C5 platform (see its con-
"guration in Table 2), using the actual optimal number of processes listed in Table 4. As shown in
Figure 5, our FiM approach achieves a pretty good agreement between the predicted and actual
results across all the six benchmarks and two applications. We also observe that RBASP has lower
relative prediction error than FiM for only BT and EP. Both BT and EP are compute-intensive
benchmarks, so a pure regression technique is su#cient to predict their execution time. However,
prediction using only regression is not good enough for I/O and memory intensive applications as
observed from RBASP prediction results in Figure 5 for the rest of the applications. As shown in
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Figure 5, for all the remaining benchmarks and applications, FiM performs better. Many real-time
applications are I/O or memory intensive, for whom simple regression model is not su!cient to
give accurate predictions. For the results shown in Figure 5, the calculation time reported includes
all background delay that occurs due to I/O latency to access the data that are required to per-
form the computations. The time required for data transfer among di"erent parallel processes is
communication time. We also observe that the prediction error of FiM remains less than 20% for
individual prediction of calculation time and communication time. Furthermore, RBASP’s predic-
tion is limited to the #xed application parameters on which the model is trained, because if the
application parameters are changed, then RBASP needs to be re-trained. In contrast, FiM can pre-
dict execution time without any prior training for new application parameters, because we do not
regress the execution time directly, but instead, we train our model to learn the change in system
counters like total cycles and stalled cycles when application parameters are changed. Thus, this
also advanced our approach to avoid over-#tting to the execution time of the training datasets.

Table 4 lists the best, average and worst prediction errors as well as the actual and predicted
optimal numbers of processes using RBASP and FiM. Apart from having a lower average error, also
having a tight prediction error range is important for these prediction approaches, because such
a range can be used to provide a quick approximation before conducting actual experiments. We
observe that FiM has a relatively tight prediction error range from the best to the worst, compared
to RBASP. Despite the lower prediction error under the best case, RBASP obtains higher prediction
errors in the worst case for all benchmarks and applications. This is because the pure regression
model used in RBASP has poor adaptability to changes in the values of attributes (e.g., number of
processes). FiM provides tighter error bounds, which is very important for such a quick estimation
modeling technique. We further observe that the optimal number of processes predicted by FiM
is very close to the actual one. We also rank the number of processes according to the actual
and predicted results from FiM and calculate the correlation1 between the actual and predicted
rankings. We obtain a high correlation in the range of 0.80 to 0.99, which indicates considerable
accuracy of our FiM estimation technique.

We further use the Chi-square goodness-of-#t test [29] to evaluate how well the predicted run-
time distribution matches with the actual measured runtime distribution with varying application
parameters and the number of processes. Our null hypothesis is that the predicted data are not
consistent with actual distribution. The signi#cance level of our test is 0.1, meaning that the devi-
ation of the predicted value is not more than 10%. The p-value2 that we obtain for our test is equal
to 0.08. Since the p-value (0.08) is less than the signi#cance level (0.1), we cannot accept the null
hypothesis. This indicates reasonably high con#dence of less than 10% error between the actual
and predicted values.

4.1.1 Individual Prediction Results. We carefully study the e"ectiveness of our model for pre-
dicting execution time with the increasing number of processes. Figure 6 shows the results for
FiM per data point (e.g., per pixel in k-means) when operated with a dataset consisting of 13 mil-
lion data points after getting trained using three datasets with less than 1,000 data points. These
experiments are performed using the C5 hardware con#guration of Table 2. We conduct all exper-
iments for 1,000 times and measure the average runtime as well as the minimum and maximum
actual runtime obtained in these 1,000 runs, which are shown by the range bars. From Figure 6(a),
we observe that the actual calculation time keeps decreasing when we have more simultaneous
processes running. We also observe that 192 is the optimal number of processes. Increasing the

1A correlation between actual and predicted ranks describes the degree of agreement between them. Correlation ranges
between −1 and 1 with 1 being the best; higher correlation signi#es better accuracy of predicted results.
2The p-value is a statistical measure of the deviation of the actual distribution from the hypothesis.
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Fig. 6. Actual and predicted time - (a) Calculation (b) Sca!er (c) Broadcast (d) Gather.

number of processes further above 192 does not give any performance improvement. Our model
can accurately predict this optimal number of processes.

Figure 6(b) shows the results of FiM-Com for the scatter pattern. For scatter of “n” data points
over “p” processes, “n/p” data points need to be transferred to each process. For scatter, each pro-
cess receives a unique subset of the dataset and thus, with the increase in the number of processes,
the number of data points to be transferred in total does not increase. Hence, the runtime of the
scatter communication depends mainly on the size of input datasets and not on the number of
processes. So, we evaluate the FiM-Com scatter model under di!erent datasets of di!erent sizes.
The results are shown in Figure 6(b) are obtained using 192 processes and for datasets with the dif-
ferent number of data points mentioned on the x-axis in thousands. The smallest dataset consists
of one thousand data points and the largest dataset consists of 13 million data points. We observe
that, when we have relatively small datasets, the scatter time per data point increases rapidly with
the increase in dataset size until 600 thousand data points scattered to 192 processes. However, for
larger datasets, the scattering time per data point remains almost constant or increases very slowly.
Each data point is of 20B, thus for less than or equal to 600 thousand data points scattered over 192
processes, less than or equal to 64KB is required to be transferred to each process. Note that the ea-
ger protocol message size is set to 64KB with environment variable MP_EAGER_LIMIT. Accordingly,
the default receive bu!er size is increased with environment variable MP_BUFFER_MEM. Hence, for
a data transfer smaller than 64KB, the communication network follows the eager protocol. How-
ever, for a large data transfer, the communication network follows the rendezvous protocol [35]
to perform sender-receiver handshake. Our scatter model is designed to capture the e!ect of this
protocol shift.

Figure 6(c) shows the results of FiM-Com for broadcast as a function of the number of processes.
We see that data transfer of each data point consumes more time as the number of processes
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Fig. 7. Sensitivity analysis - (a) Dataset size (b) Number of Iterations (c) Number of Clusters.

increases. This is because for broadcast, with each additional process, the number of data points to
be transmitted also increases unlike scatter. The increase in data packets incurs an additional load
that in turn increases the average broadcast time of each data point. Last, the results under the
uplink gather pattern are plotted in Figure 6(d) with respect to the number of processes for each
data point. The gathering time increases linearly with an increase in the number of processes due
to the increased congestion in the communication network, with more data points to be received
by the data collecting node. From Figure 6, we observe that our FiM models accurately predict
the calculation and communication times under di!erent communication patterns. Also, the pre-
dicted results mostly remain in the range bars (i.e., the minimum to the maximum) of the actual
observations. All these graphs show that FiM estimates are very accurate.

4.2 Sensitivity Analysis
One signi"cant contribution of our modeling techniques is to accurately predict for large datasets
by using only small datasets to train and calibrate the models. In our experiments, we use three
small datasets as the training ones to collect data for model calibration. For a new application, we
need "rst to train to derive a new model. However, for new sets of application parameters and
new datasets (including both small and large ones) of the same application, the derived model can
be used to predict the runtime. Therefore, we perform a sensitivity analysis of di!erent dataset
sizes and application parameters. We argue that if the user has the #exibility to choose application
parameters for achieving optimal performance, our model then can provide useful guidance by
helping the user to decide appropriate parameters.

For example, k-means processing with more iterations and more clusters can provide better
clustering results and accuracy but consume more time. Therefore, it would be useful to use
FiM to estimate the execution time with respect to the increase in the number of iterations and
number of clusters to determine how much extra latency is needed to achieve better accuracy.
The results of execution time for the k-means algorithm as a function of (a) dataset size, (b) the
number of iterations, and (c) number of clusters are plotted in Figure 7. Figure 7 also shows the
actual and predicted calculation and communication time. We experiment with di!erent hardware
con"gurations as shown in Table 2, and present the results of the C5 con"guration here. In these
experiments, we also use the predicted optimal number of processes listed in Table 4. For each plot
in Figure 7, we do a sensitivity analysis on one parameter and "x the remaining two parameters
with dataset size of 250MB, 500 iterations and 250 clusters. We observe that our models can
accurately predict the execution time even when the datasets become large, see Figure 7(a).
Note that we only use small datasets to train our models. Figure 7(b) shows a linear increase of
execution time with increasing number of iterations. Figure 7(c) further shows execution time
with respect to the increase in number of clusters. Summarizing from Figure 7, we can see that
FiM consistently achieves predicted results in good agreement with actual ones under di!erent
application parameters like dataset size, number of iterations and number of clusters.
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Fig. 8. Sensitivity analysis w.r.t. number of MPI processes for (a) k-means and (b) Pagerank.

Fig. 9. Sensitivity analysis w.r.t. distribution of cores under (a) a small dataset with 40 vertices and (b) a large
dataset with 4,039 vertices for Pagerank application.

We further evaluate the prediction of our models under di!erent hardware con"gurations. A
distributed computing platform deployed using MPI o!ers di!erent choices in the number of par-
allel processes and the distribution of cores (e.g., C1-C5 listed in Table 2). Figure 8 shows the actual
and predicted execution times with respect to the number of parallel processes for (a) k-means and
(b) Pagerank, respectively. We can see that the best performance (i.e., the shortest execution time)
is achieved in the middle range of processes, e.g., 38 for k-means and 12 for Pagerank. FiM is able
to predict the optimal performance for both applications accurately. Predicted results match well
with actual ones across the di!erent number of processes.

Figure 9 plots the predicted results for Pagerank under "ve di!erent hardware con"gurations
listed in Table 2. To be able to predict across such heterogeneous platforms, we calibrate our
model for data compute and data transfer among each type of available hardware. We observe that
the "rst three con"gurations (C1, C2, and C3) achieve a shorter execution time for a small dataset
(see Figure 9(a)). When we have large datasets, C4 and C5 with more distributed cores are better
(see Figure 9(b)). FiM can accurately predict such performance trends, i.e., Pagerank becomes
more scalable on the higher number of distributed cores for larger datasets. These estimation
results can thus provide us with insightful data regarding the scalability of an application on a
multi-core computing platform.

Here, we evaluate our technique by individually varying each variable parameter. From the re-
sults presented above, we see that this sensitivity analysis helps to observe that prediction accuracy
of our model remains intact with changing application parameters, number of parallel processes
and di!erent hardware platforms.
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Fig. 10. Regression mapping (K - number of clusters, I - number of iterations).

4.3 Validation
In this section, we present the validation for considering the linear regression model to extrapolate
hardware variables such asTC , SC , andU . In particular, we show results using k-means clustering
as a representative. Recall, for k-means, we chose linear regression to extrapolate hardware vari-
ables as a function of application parameters (I , N , and K ), see Section 2. There are a variety of
regression models that can be used. It is not straightforward to choose the right regression model
that is best suited to our requirement. Even a complex model might over-!t the training data,
generating a substantial prediction error on other datasets. However, a simple model may under-
estimate the learning trends and produce incorrect predicted results [39]. Considering these two
cases, we !rst investigate the learning trend of three hardware variables (TC , SC , andU ) under dif-
ferent settings of application parameters. We choose the linear regression model after examining
other regression models such as a piece-wise linear model, Poisson models and quadratic models
with di"erent degrees of the polynomial.

We investigate the learning trend of three hardware variables under di"erent settings of appli-
cation parameters. We show the hardware variables such asTC , SC , andU for k-means clustering
as a representative. Figure 10 depicts the resulting surface of each hardware variable as a func-
tion of application parameters (e.g., I and K for the k-means application). Similar results can be
obtained for other combinations of application parameters, such as (I , N ) and (N , K ). In Figure 10,
linear surfaces can be found for di"erent hardware variables. Thus, we conclude that hardware
variables TC , SC , and U , linearly depend on the increment in application parameters (such as K ,
I , and N ). These results con!rm the use of the linear regression mapping in our machine-learning
approach.

We also investigate the calibration of our communication models, i.e., the training results of the
service rates for each server in the queuing models, see Section 3.2. In Figure 11, we plot the CDFs
of the measured communication service times (i.e., 1/µ2, 1/µ3 and 1/µ4) for the three components
(i.e., metadata transfer (M), network initialization (C) and data fetch time (R)) in the communication.
The predicted service times drawn from our calibrated service processes (i.e., Equations (14), (15),
and (16)) are also plotted in Figure 11. We can see that the predicted service time distributions well
capture the actual service times.

The Chi-square goodness-of-!t test [29] is used to evaluate how the three derived statistical
distributions (i.e., uniform, logarithmic and exponential) for µ2, µ3, and µ4 !t the actual measure-
ments. The chi-squared test is used to determine whether there is a signi!cant di"erence between
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Fig. 11. Cumulative distributed functions (CDFs) of the actual and predicted service times (per job) for
(a) metadata transfer, (b) network initialization, and (c) data fetching.

the expected distribution and the observed distribution. Our null hypothesis is that the derived
statistical distributions are not consistent with actual distribution. The signi!cance level of our
test is 0.15, meaning that the maximum deviation of the predicted distribution is not more than
15%. The p-values3 that we obtain for service rates µ2, µ3, and µ4 are equal to 0.08, 0.11, and 0.14,
respectively. Since the p-values are less than the signi!cance level (0.15), we reject the null hy-
pothesis. This indicates reasonably high con!dence of not more than 15% error between the actual
and predicted values.

5 RELATED WORK
Modeling helps to shorten the development cycle by providing the necessary insights to obtain
optimal performance. Performance modeling can be approached in several di"erent ways, includ-
ing empirical evaluation [17, 18], simulation [9, 26, 28] and analytical modeling [4, 15]. Empirical
evaluation is a technique for gaining knowledge about a system from observations of experiments.
This requires the exact implementation as well as similar hardware to the target, because results
are based on observed ground truth. Empirical techniques were popular in the past when com-
puter hardware was stable over long periods. They give result fast and accurately for the datasets
similar to training.

Simulators model hardware such as memory hierarchy, communication buses, parallel ports, and
accelerators [31, 33, 40]. They evaluate each block of the given codes, similar to the manner that it
is executed on the target machine. Thus, they require source codes while performing prediction.
Although simulators like SimpleScalar [3] and CACTI [38] can predict with high accuracy, they
also consume a long time to give predicted results. Their slow running time and infrastructure
cost are major drawbacks.

Analytical modeling is the technique of building a set of equations to show the high-level ab-
straction of the behavior of an application and a hardware architecture. This type of modeling can
be evaluated quickly and easily as it is reduced to the form of the set of equations to be solved.
Analytical models can be #exible and scalable but are comparatively less accurate than empirical
and simulation-based models, because they lack accurate hardware machine models. The major
drawback of analytical modeling is that it limits the scope of prediction. These models will give
high prediction errors if tested with parameters that were not captured when building the model
equations. An innovative idea is the combination of the above models, e.g., COMPASS [25]. It gives
good accuracy but requires the compilation of source code for each new test dataset as well as the
conversion of source codes to ASPEN [36]. COMPASS requires the hardware machine model to
be formed not only for training but also for testing, which is quite time consuming, especially for
large datasets.

3The p-value is a statistical measure of deviation of the actual distribution from the hypothesis.
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Predicting the performance of any parallel processing platform consists of two major phases,
i.e., calculation and communication. The Markov chain modeling using probabilistic distribution
assists in predicting the calculation load of multi-process and multi-core architectures [12, 27, 32].
These approaches model systems in the form of equations, where changes to the code or data
require changes to the equations. The above process can be time-consuming when we desire to
predict for a range of parameters. Some analytical models [13, 14, 21, 22, 34] require the conversion
of source code into a control !ow chart for the ease of framing equations. Our model predicts the
performance of an application on a range of input parameters without requiring a new set of equa-
tions, as FiM uses a machine-learning model to learn hardware parameters. Ad hoc analytical mod-
els and structured analytical models have been developed to predict the network communication
behavior of an application [11]. They use prede"ned models such as timeline diagrams showing
various network overheads. This type of models cannot e#ciently capture di$erent patterns like
scatter, broadcast and gather. The concept of using queuing theory to model such communication
and predict the expected communication time is a novel idea described in our article.

6 CONCLUSIONS
We present a novel performance modeling technique (FiM) to predict the execution time of iterative
multi-stage data processing applications running on parallel computing paradigm. We combine
di$erent modeling techniques, such as stochastic Markov modeling, machine-learning techniques
and queuing theory, to predict the end-to-end execution time. FiM estimates the time required for
both data calculation and data communication across a range of input datasets, application con"g-
urations and parallel hardware parameters such as number of processes. We demonstrate that FiM
helps system designers and application programmers choose optimal hardware parameters and
application parameters. More importantly, our prediction models are parameterized using small
datasets but can predict accurately for large datasets. We evaluated our approach using NAS Par-
allel Benchmarks and real iterative data processing applications. We rank the number of processes
according to the actual and predicted results from FiM and calculate the correlation between the
actual and predicted rankings. Our results show that FiM obtains high correlation in the range of
0.80 to 0.99, which indicates considerable accuracy of our technique. In the future, we plan to ex-
pand the scope of our prediction model to investigate other communication patterns like all-to-all
communication. We will also capture scenarios where there is an overlap between the communi-
cation and computation phases. Large-scale computing platforms, including GPUs, will further be
considered as a target environment.
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Abstract—
The rapid growth of in-memory computing powered by data-

intensive applications has increased the demand for DRAM in
servers. However, a DRAM-based system can be limiting for
modern workloads because of its capacity, cost, and power
consumption characteristics. Hybrid memory systems, which
consist of different types of memory, such as DRAM and
persistent memory, can help address many of these limitations.
One promising direction that has been explored in the recent
literature involves introducing persistent memory devices as a
second memory tier that is directly exposed to the CPU. The
resulting tiered memory design must address the fundamental
challenge of placing the right data in the right memory tier at
the right time while minimizing overhead. We present MULTI-
CLOCK, an efficient, low-overhead hybrid memory system that
relies on a unique page selection technique for tier placement.
MULTI-CLOCK’s page selection captures both page access recency
and frequency, and enables moving pages to appropriate tiers at
the right time within hybrid memory systems. We implemented
a Linux-based, NUMA-aware version of MULTI-CLOCK that is
entirely transparent and backward compatible with any existing
application. Our evaluation with diverse real-world applications
such as graph processing and key-value stores shows that MULTI-
CLOCK can improve the average throughput by as much as 352%
when compared with several state-of-the-art techniques for tiered
memory.

I. INTRODUCTION

Over the last several decades, DRAM performance and
capacity have followed Moore’s Law and thus kept up with
advances in CPU technology. However, DRAM-based memory
systems have two significant drawbacks — cost and power
consumption. These drawbacks impact their usage in both
enterprise servers and mobile systems. Most new genera-
tion applications are inherently memory-intensive, whereby
workloads demand access to high-performance yet low-cost
memory systems [1]–[4]. A complementary technological
change is the imminent availability of higher capacity and
lower power consuming byte-addressable persistent memory
(PM) technologies [5]–[7]. These new memories offer latency
and bandwidth for byte-addressable access that are within an
order of magnitude of those for DRAM [8], [9], with power
consumption being lower by 4-29x compared to DRAM [8].
These characteristics make the use of PM to extend the main
memory attractive. When using PM as the main memory,
its persistence capability becomes irrelevant, thereby entirely
avoiding its biggest performance overhead [10].

One appealing use of persistent memory is as a new tier
in a hybrid multi-tier memory system with tiers ordered from

high performance - low capacity to low performance - high
capacity. This approach allows applications to access their
data directly from persistent memory without first paging
into DRAM. However, managing persistent memory simply
as additional available memory (i.e., static tiering) could
compromise the effectiveness of the tiered memory system.
Once an application has exhausted higher performance tier
resources, future allocations for that application or any other
application on the system will have to be serviced from lower
performance tiers. Additionally, such allocations continue to
reside in lower performance tiers regardless of how important
the data becomes over its lifetime. Thus, the primary challenge
in building an efficient hybrid memory system is the dynamic
placement of pages in appropriate tiers. From a system design
standpoint, addressing this challenge translates to understand-
ing the relative importance of pages, identifying misplaced
pages in either tier and moving such pages to their optimal
tier, all while controlling the overhead of these operations.
The major contributions of our work are:

• We design an efficient page selection method for dynamic
page movement across memory tiers. This method enables
identifying pages suitable for specific memory tiers in an
online fashion, thereby adapting to the workload.

• We propose MULTI-CLOCK, a solution based on dynamic
tiering that overcomes the limitations of static tiering and
extends the system’s memory with improved performance
without sacrificing DRAM capacity.

• We develop a real-system prototype implementation of
MULTI-CLOCK using Linux version 5.3.1 by extending the
kernel’s page reclamation algorithm to include its dynamic
page migration logic.

• We evaluate the performance of our prototype using diverse
workloads including graph analytics and key-value stores to
compare MULTI-CLOCK with existing solutions.

We evaluate MULTI-CLOCK against Nimble [11], AutoTier-
ing [12], and Memory-mode [7]. Our evaluation with YCSB
workloads [13] using a Memcached [3] backend and with
GAPBS [14], a graph processing benchmark, shows that
MULTI-CLOCK provides up to 132% higher performance com-
pared with static tiering and up to 352% compared with other
state-of-art solutions such as Nimble [11], AutoTiering [12],
and Memory-mode [7]. From these experiments, we find that
the page selection mechanism in dynamic tiered memory
systems is of critical importance. We also demonstrate that
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Fig. 1. Heat-map of pages access frequencies depicts access frequencies
of the sampled pages in (a) RUBiS OLTP, (b) SPECpower (OLTP),
(c) Dacapo xalan and (d) Dacapo lusearch.

the state-of-the-art page selection mechanisms do not consider
page access frequency distributions for identifying page mi-
gration candidates, and we demonstrate that doing so is vital
for optimizing performance in a tiered memory system.

II. MOTIVATION

Integrating persistent memory (PM) devices into existing
systems force a rethink of the system architecture. Due to
the relatively high read and write latency and low bandwidth,
using only PM as the main memory is not ideal. On the other
hand, a hybrid memory system with DRAM and PM can
deliver both high throughput combined and increased capacity.
However, designing a memory hierarchy with PM to improve
the performance of applications is non-trivial.

One promising approach of utilizing PM is to configure
both DRAM and PM as separate tiers in a multi-tier memory
system. With tiering, data residing in the byte-addressable
PM is treated as resident in the main memory and directly
addressable by the CPU. Tiers represent disjoint sets of
memory frames. The operating system identifies which frames
belong to each memory type and assigns them to their proper
tier. Tiers can be arranged in a specific order, following the
characteristics of the different types of memory from Higher
Tier - high performance - low capacity to Lower Tier - low
performance - high capacity), to service memory allocations.

In this section, we discuss the diversity in the access patterns
of pages across applications. We also discuss why the careful
selection of candidate pages for specific tiers based on both
the frequency and recency is pivotal for performance. We
also discuss the existing solutions for the DRAM-PM tiered
memory systems and their limitations.

A. Diversity in Page Access Patterns

Let us consider a simple tiered memory system wherein
pages are first allocated (or get ”born in”) in the DRAM tier.
When the system starts running low on free space in DRAM,
the system starts demoting less frequently accessed pages to
the PM tier to free up DRAM space for new allocations.
Without an available promotion mechanism, a demoted page

Fig. 2. Distribution of access frequencies for different page types depicts
the distribution of access frequencies in the performance windows for
the two types of pages: pages that were accessed only once during the
observation window and pages that were accessed multiple times in
the observation window. Workloads for the experiment: (a) RUBiS
OLTP, (b) SPECpower (OLTP), (c) Dacapo xalan and (d) Dacapo
lusearch.

would reside in the PM tier for the rest of its lifetime. If a
significant number of demoted pages get frequently accessed
post-demotion, a complementary promotion mechanism that
allows demoted pages to move back to the DRAM tier may
result in better system performance. However, a tiered system
with the facility of promoting pages from PM to DRAM can
improve performance only if promoted pages are accessed
relatively more frequently for a reasonable amount of time af-
terward. To evaluate the potential for a promotion mechanism
in improving workload performance, we recorded the access
patterns of pages in memory over time within applications.
To keep the overhead tractable, we randomly sampled pages
from memory, assigned them unique identifiers, and traced the
accesses to these sampled pages.

In Figure 1, the heatmap depicts the frequency of accesses of
the sampled pages for the execution periods of four workloads
from different benchmarks: (a) RUBiS OLTP benchmark [15],
(b) SPECpower (OLTP) [16] running at 80% of the maximum
throughput, (c) Dacapo xalan(XML to HTML conversation)
and (d) Dacapo lusearch(searching keyword over a corpus of
data using lucene) [17]. On the Y axis, 50 sampled pages
are sorted in ascending identifier order. The x axis represents
execution time. Each block of the heatmap shows the intensity
of the access frequency for a particular page for a particular
time segment. The heat maps indicate fairly diverse access
patterns for the sampled pages. Some pages show frequent
accesses throughout the execution period. We denote these
pages by DRAM friendly pages which should always reside
in DRAM. Other pages have very infrequent accesses over
the entire execution time. The total number of accesses from
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Tiering
Technique

Page Access
Tracking

Page Selection NUMA
Aware

Space
Overhead

Generality Evaluation Usability
Limitation

Key
InsightPromotion Demotion

Static-
Tiering N/A N/A N/A Yes N/A All PM None Straight forward

Thermostat Software
Page Fault N/A Frequency No Yes Huge

Page
Emulator
(KVM)

Not Open
Source

Poisoning huge
pages

AutoNUMA-
Tiering

Software
Page Fault Recency N/A Yes Yes All PM Config.

NUMA Paths NUMA balancing

AutoTiering Software
Page Fault Recency Frequency Yes Yes All PM Config.

NUMA Paths

Maintain N-bit
history for
demotion

Nimble Reference Bit Recency Recency No No All Emulator Config.
Launcher

Optimize huge
page migrations

AMP Reference Bit
Recency+

Frequency+
Random

Recency No Yes Huge
Page

Emulator
(QEMU)

No KMEM
DAX Support

Hybrid page
selection

MULTI-
CLOCK

Reference Bit Recency+
Frequency Recency Yes No All PM None Low overhead Re-

cency/Frequency

TABLE I
Comparison of existing memory tiering techniques.

these pages is very low compared to the total access count
during the execution. Thus, the tier residence of these pages
does not significantly impact the overall performance. Apart
from these two types of pages, we see that certain pages
can significantly benefit a tiered memory system. These Tier
friendly pages show bimodal access behavior whereby for
some time segments they get accessed at a much higher rate
than other time segments. If these pages can be identified
by analyzing their access patterns and moved to the DRAM
tier when they start to get accessed at a higher rate, the
overall application performance can potentially be improved.
Thus, our core motivation for a dynamic tiering system is
driven by two main observations: (a) the importance of pages
changes over time, and (b) at any given time, the importance
of different pages in the system can vary significantly.

Next, we investigate the importance of frequency of ac-
cesses along with the recency for identifying Tier friendly
pages. Recent works such as Nimble [11] select pages only
based on the recency since capturing frequency on the real
system with minimal overhead is challenging. To understand
the access frequency of pages, we divide the whole execution
period of the workloads that were used in the experiment in
Figure 1 into multiple sets of observation windows followed
by performance windows. We divide sampled pages that were
accessed into two defined categories: pages that were accessed
only once during that particular observation window and pages
that were accessed multiple times. Finally, we measure their
accesses in the next performance window, and we follow
the same procedure for all (observation window, performance
window) pairs. In the frequency distribution shown in Figure 2,
we can notice that pages that were accessed multiple times
in the observation windows are accessed with a much higher
frequency on average in the performance windows compared
to the pages that were accessed only once. This suggests that
pages with higher frequency in some observation windows
have a higher probability of getting accessed in the next
performance window.

B. Persistent Memory in Memory-mode

Persistent memory in Memory-mode is a natively system-
supported solution for using PM as memory. It is implemented
in recent memory controllers that support PM and by recent
operating systems that support PM DIMMs [7]. In Memory-
mode, DRAM is directly mapped as the cache for data stored
in PM and used as the last level cache in addition to the
L1/L2/L3 caches. The system recognizes only the PM as
memory. In a multi-socket system, DRAM can only act as
a cache for the PM DIMMs on the same socket [18]. The
primary limitation with using PM in Memory-mode is that
the available DRAM capacity is unusable by the operating
system and thus applications as well.

C. Memory Caching and Tiering

The classical caching problem when used with memory
hierarchies in computer systems is distinct from the dynamic
memory tiering problem. With caching, every item needs to be
fetched from the higher-performing tier (i.e., DRAM) before
accessing it. With tiering, in addition to the high performance
(DRAM) memory tier, there’s a second (lower-performing)
memory tier that is also directly accessible. Due to the small
performance gap between the high-performing and the lower-
performing tiers, items can be directly fetched from the lower-
performing tier without significant performance loss. Thus, the
core problem to address here is placing the right data in the
right memory tier, online.

Caching-aware applications (e.g., compilers) can organize
prefetching and increase memory access efficiency during
execution. In the future, if tiers of memory get individually
exposed to applications, it is conceivable that applications
can achieve prefetching of data from PM to DRAM via
OS hints. MULTI-CLOCK provides a currently usable method
where the kernel can automatically identify the hot items and
can serve them from the higher memory tier. This technique
is entirely oblivious to applications. Furthermore, dynamic
migration implemented in systems such as MULTI-CLOCK is
complementary to prefetching-based techniques and can also
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be effective in systems where prefetching is not feasible or
accurate.

D. Existing Tiered Memory Systems and Their Limitations

Table I shows the comparison of the existing and MULTI-
CLOCK tiering system. A straightforward way to tier is static
tiering, whereby a memory page, once mapped to a tier,
may not get reassigned to a different tier during its lifetime.
However, this is inefficient; when an application wins the
race to allocate memory from a higher tier, and such space
is exhausted, future allocations will be downgraded to use
lower tiers during their entire lifetime, regardless of how the
importance of the contained data changes over time.
[Software Page Fault Based Page Access Tracking.] Ther-
mostat [19] focused on tracking huge pages by poisoning
the page table entry (PTE) and triggering a software page
fault, and migrating cold pages to the lower memory tier.
AutoNUMA-tiering [20] and AutoTiering [12] are based on
AutoNUMA [21]. Similar to Thermostat, these solutions use
a software page fault technique called hint page fault to track
the page access and use recency to identify hot pages for
promotion. Although the software page fault techniques can
provide high accuracy in page access tracking, it is costly to
track all the pages as every page fault has to be handled before
accessing the page. Moreover, these techniques also require
additional memory to store each page’s individual scan time
on which its page hotness classification depends. AutoTiering
designs a conservative approach (AutoTiering-CPM) to mi-
grate pages to the best NUMA node. In addition, AutoTiering
maintains an n-bit vector for each page to determine the page
coldness and designs a progressive approach (AutoTiering-
OPM) to demote cold pages to lower tier. We could not
evaluate Thermostat as its source code was not available.
We evaluate both AutoTiering-CPM and AutoTiering-OPM to
compare the performance with MULTI-CLOCK. AutoTiering-
CPM is designed using AutoNUMA-tiering, and thus we did
not explicitly compare with AutoNUMA-tiering.
[Reference Bit Based Page Access Tracking.] Nimble [11]
focuses on transparent huge page (THP) migration, enables
multi-threaded concurrent migration, and two-sided page ex-
change to improve the overall page migration performance.
However, Nimble uses the existing page profiling technique of
the Linux kernel to exchange the top most recently accessed
pages in the lower tier with the least recently accessed pages
in the upper tier. Nimble is evaluated on an emulator, and
applications need to run through Nimble’s launcher to utilize
its page migration techniques. As Nimble mainly focuses
on the optimization of the overall page migration process,
we separated its hot/cold page identification technique and
implemented a single threaded Nimble page selection mecha-
nism in a real system for the singular purpose of comparing
against MULTI-CLOCK’s page selection mechanism. MULTI-
CLOCK itself is implemented as a built-in kernel feature, and
hence, applications do not require to follow any purpose-built
launcher mechanism for using MULTI-CLOCK.

AMP [22] proposes a tiered memory system that focuses
on page selection mechanisms based on the popular cache
replacement algorithms, including least-recently-used (LRU),
least-frequently used (LFU), and random selection. AMP is
designed, implemented, and evaluated using an emulator. AMP
uses one node, only for DRAM allocations, and the other node
only for PM allocations, which is unrealistic in a two socket
NUMA machine wherein each node typically has its own
DRAM, PM, and CPUs [7]. Moreover, AMP is implemented
on Linux kernel version 4.15, which does not support the
required KMEM DAX driver (available from kernel v5.1) to
use PM as the main memory in a tiered system. Furthermore,
the core design principle of AMP requires it to scan and profile
all the memory pages from both DRAM and PM tier, which
is impractical in the kernel on a real system as the number
of in-memory pages can grow to hundreds of millions for the
workloads we evaluated. Hence, for multiple practical reasons,
we could not deploy AMP on a real system for evaluation.

Identifying the hot/cold data in virtual memory manage-
ment may cause a high overhead. For low overhead, efficient
tracking, the Linux kernel implements CLOCK, which is the
approximation of the popular LRU cache replacement policy.
As tracking every in-memory page access is not feasible,
LFU is considered impractical for general virtual memory
management. The CLOCK algorithm does not consider the
frequency of the access. In a tiered memory system, as we
have shown in Section II-A, it is important to capture both
recency and frequency for hot/cold page identification. Hence,
in this paper, we try to solve the following two novel research
questions for tiered memory systems:
• RQ1: How to identify hot pages for promotion based on

recency and frequency?
• RQ2: How to design a simple and low overhead yet efficient

system in the kernel?

III. MULTI-CLOCK
A fundamental problem with static tiering is the mismatch

of page access performance requirements with tier perfor-
mance capabilities. Dynamic memory tiering mechanisms ad-
dress this problem with a solution that dynamically migrates
important pages to higher tiers and less important pages to
lower tiers. The principal hypothesis of designing MULTI-
CLOCK is that the pages that are recently accessed more than
once are more likely to be accessed in the near future. MULTI-
CLOCK determines the relative importance of pages within and
across tiers by running a modified version of Linux’s Page
Frame Reclamation Algorithm (PFRA) (which is based on the
CLOCK algorithm) to each memory tier separately.

MULTI-CLOCK is implemented based on the well-known
CLOCK because of its low overhead and effectiveness. How-
ever, MULTI-CLOCK does not use CLOCK exactly as it is.
The CLOCK algorithm approximates LRU by checking for
references when scanning the list of pages and moving any
referenced page to the head of the list. MULTI-CLOCK uses a
new approach to identify important pages in the lower tier.
In addition to the active and inactive lists, MULTI-CLOCK
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Fig. 3. MULTI-CLOCK architecture. The new data structures that we
add to each tier and the interaction between these data structures. The
arrows show the movement of pages across different page lists. The
solid arrow represents both MULTI-CLOCK and Nimble, the dashed
arrow is for MULTI-CLOCK only, and the dotted arrow is for Nimble
only. The label numbers do not represent any particular order of the
operations.

introduces a new promote list to select the candidate pages
for promotion. MULTI-CLOCK completely reworks how pages
are moved across the lists in both tiers, thus introducing a new
lifecycle of pages.

New pages are allocated from the DRAM. Once the DRAM
is full, pages are allocated from the PM tier. Every page
in the system is arranged in one of its tier’s three lists
according to their degree of hotness/coldness of accesses. The
DRAM tier in the system does not use a promote list since
there is no higher-performing tier to migrate pages to. With
these changes, MULTI-CLOCK is able to capture both recency
and frequency. Hence, although MULTI-CLOCK is based on
the CLOCK algorithm, it is different from CLOCK and has
significant algorithmic contributions and unique implementa-
tion challenges that we elaborate next in this section and in
Section IV.

A. Life Cycle of a Page
Figure 3 depicts the overall arrangement of lists in the

two tiers on the system and the possible movement of pages
within and across these tiers for both MULTI-CLOCK and
Nimble. Every list is scanned at various points in time to
make decisions regarding migrations. In MULTI-CLOCK, a
recently allocated page starts in the inactive list as shown in
the Figure 3(1). The inactive list of a higher-performing tier
maintains candidate pages for demotion, i.e., migration to a
lower-performing tier. A page is said to be referenced if any
type of access (i.e., read or write) occurs to the page. Both
inactive and active lists make a differentiation between pages
that were referenced and those that were not referenced since
the last scan.

During a scan, if a page has been marked referenced since
the previous scan is encountered, it is then marked as not

referenced and moved to the head of the list. On the other
hand, if the page was not referenced, it is moved according to
which list it belongs to: (a) if it belongs to the active list, it
is moved to the inactive list as shown in Figure 3 (4) and (7),
and (b) if it belongs to the inactive list is then migrated to its
lower tier, and if none exists, evicted out of memory (Figure
3 (6)). This movement of pages out of a list is referred as
the shrink of the source list. At the same time, when access
occurs to a page in the inactive list and that page was marked
as referenced, this page is activated by being moved to the
active list’s head, where it starts out by being marked as not
referenced (Figure 3 (3) and (5)). A similar process is followed
when a page is re-activated and is moved from the active list
to the promote list’s head (Figure 3(8)), where it becomes a
candidate for promotion (i.e., migration to a higher-performing
tier) as shown in Figure 3(10).

With this arrangement, the system is able to classify pages
into three categories: hot, warm, and cold. Hot pages navigate
the lists within a tier and eventually reach the promote list
where they become candidate pages to migrate to the higher-
performing tier. On the other extreme, cold pages remain in the
inactive list where they become candidates for migration to a
lower-performing tier when the tier experiences memory pres-
sure. Thus, MULTI-CLOCK makes decisions on how to place
each page within an appropriate tier and within an appropriate
list according to their access frequency and recency.

The key difference in the architecture of MULTI-CLOCK and
Nimble is shown in Figure 3. The life cycle in Nimble involves
the page only residing in the dotted box on the right side of the
Figure 3. Nimble does not have any promote list, and thus it
cannot differentiate between pages accessed exactly once and
those accessed more than once. Nimble selects a fixed number
of the top pages in the lower tier’s active list to promote to the
bottom of the higher tier’s active list as shown in Figure 3(11).
The number of pages that get selected by MULTI-CLOCK is
not fixed as it qualitatively chooses pages from the lower tier’s
active list based on recent re-accesses to the pages.

One of the key challenges in designing MULTI-CLOCK is
keeping track of accesses and updating the reference status
of pages in a timely matter. This is addressed differently
depending on the type of page access used by applications.
Applications can access memory pages in two ways: su-
pervised, using the operating system’s (OS) file system call
interface, and unsupervised, by memory mapping pages into
their address-space.

1) Supervised Access: This type of access is typically used
for file-backed pages, and it gives the OS control at the
moment of the access to perform the necessary book-keeping.
When applications use supervised access to memory pages,
the operating system is able to mark these pages referenced
(for e.g., in Linux, via mark_page_accessed()) and, if
necessary, to move between lists (activate or re-activate) before
even processing the requested data access.

2) Unsupervised Access: Accesses to anonymous or file-
backed memory that is directly mapped into the application’s
virtual address space via mmap are more difficult to monitor.
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This type of access is entirely unsupervised, and the OS is not
able to mark such pages as referenced. To handle unsupervised
access, MULTI-CLOCK relies on the page reference bit set by
the CPU in the process’ page table entry. During each scan,
as described earlier, before making any decision regarding
a specific page, MULTI-CLOCK checks within every process’
page table that maps it for a set referenced bit. If a referenced
bit is found set, MULTI-CLOCK updates the page status and
takes care of the necessary movement between lists (i.e., mark
as referenced, activate, or re-activate the page).

B. Promotion Mechanism

We design a new system daemon, kpromoted, that is
woken up periodically to scan the lists, update them, and
migrate any pages from the promote list to a higher tier due to
recent unsupervised accesses. Every time kpromoted runs, it
first selects the candidate pages for promotion and promotes
all the pages it selected. Thus, once a page is selected for
promotion, the page gets promoted to the DRAM in the same
kpromoted run. As kpromoted promotes all the pages
it selects, the number of promotions depends on the running
application. If the application frequently accesses a large
number of pages from the PM tier, the number of promotions
will increase. On the other hand, if the application does not
frequently access pages from the PM tier, kpromoted will
promote fewer pages or no pages at all.

Implicitly, MULTI-CLOCK relies on the periodicity of
kpromoted waking up to ensure that hot pages in lower
tiers are migrated to higher tiers in a timely manner. The
frequency of kpromoted’s execution defines the capacity of
the system to react quickly to workload changes. If scheduled
too frequently, excessive context switches to accommodate its
execution could also affect application performance. Careful
tuning of kpromoted’s execution schedule is necessary to
ensure that applications benefit from the promotion mechanism
in MULTI-CLOCK. In the prototype system we built, we chose
the kpromoted execution schedule to be every 1 second
as discussed in Section V-E and this worked fairly well
for the workloads we evaluated the system with. It resulted
in sufficient responsiveness in promoting hot pages without
imposing high CPU overheads due to unnecessary scanning
of every page in the LRU lists.

C. Demotion Mechanism

Demotion allows moving cold pages from a higher-
performing tier to a lower-performing tier when these pages
are no longer sufficiently important. MULTI-CLOCK’s design of
this mechanism is based on the page eviction design in today’s
virtual memory systems. To avoid running out of memory on a
given tier, a tier is marked under memory pressure proactively
when it reaches specific watermark levels. These levels are
calculated by the system according to the amount of memory
in the tier vs. the total amount of memory in the system.

If any tier is marked as being under memory pressure, each
list is scanned with the objective of freeing up memory. Any
page in the promote list is first attempted to be migrated

to a higher-performing tier, and if that is not possible —
for instance, the page is locked — then it is moved to
the active list. If the higher-performing tier is also under
memory pressure, promotions from the lower tier result in
immediate page demotions from the higher tier. Next, if the
ratio of pages in the active list with respect to the inactive
list exceeds a tunable threshold (inherited from PFRA and
typically

p
10 ⇤ n : 1, where n is the amount of memory

in GB available in the tier), pages not marked as referenced
in the active list are moved to the inactive list. Finally, the
inactive list is scanned in search of pages not marked as
referenced to be migrated to a lower tier. Migration may not
be possible, specifically because the candidate pages belong
to the lowest tier in the system. In this case, these pages are
written back to block storage (i.e., file-backed pages to file
system and anonymous pages to the swap area if available)
before triggering the out-of-memory (OOM) killer as the last
option.

IV. IMPLEMENTATION

The existing Linux mechanism to describe physical memory
relies on the definition of nodes. In NUMA architectures,
each bank of memory is represented by a single NUMA
node. On the other hand, for UMA architectures, Linux
uses a single NUMA node to represent all physical memory
in the system. The data structure used to represent nodes
is called pglist_data. Each node is then divided into
memory ranges called memory zones, and Linux uses the
data structure zone to represent them in memory. Zones are
of different types, and each type is suitable for a different
usage (i.e., ZONE_DMA gathers physical addresses that can be
accessed by legacy hardware through DMA). We implemented
a prototype of MULTI-CLOCK for NUMA architectures for
Linux kernel v5.3.1. Our prototype evaluates a hybrid two-
tiered memory system: one tier of DRAM and another of
persistent memory. In comparison with Nimble, which requires
an additional launcher to run any workload on the kernel,
our implemented prototype of MULTI-CLOCK can directly run
any workload without any additional configuration setup or
prior knowledge. We used the Intel Optane DC Persistent
Memory on a real platform as the persistent memory tier
(discussed in Section V-A). Upon creating a new namespace
in devdax mode using the ndctl tool [23], we can hot-plug
the namespace as system memory with the DAX-KMEM driver.
DAX-KMEM driver is available in the kernel from v5.1 and
onwards. The DAX-KMEM driver separates newly added PM
from the DRAM by hot-plugging PM as a new node. We
modified the DAX-KMEM driver to tag the newly hot-plugged
node as a PM node, so that MULTI-CLOCK can recognize it by
adding a new flag in the pglist_data structure. Although
PM is hot-plugged as a new node, this node id is different
from the physical node of the PM, i.e., the socket where it
is physically installed. We define all the DRAM nodes as the
DRAM tier and all the PM nodes in the system as the PM
tier.
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Fig. 4. Page state diagram depicting the Linux implementation of MULTI-CLOCK Each vertex represents a page state; white vertices are original
PFRA page states while the gray vertex is a new page state introduced by MULTI-CLOCK. Solid edges represent Linux procedures that change
page state; dashed edges represent page migration to a different tier. Counterparts to shrink list methods are implicit on page allocations
that cause lists to expand. The numeric edge numbers do not represent any particular order of operations.

The main design principle of MULTI-CLOCK is to migrate
cold data from the DRAM tier to the PM tier and move
hot data from the PM tier to the DRAM tier. We rely on
the existing Linux migration mechanisms already in place for
the hot-plug/hot-remove of memory. Linux’s page migration
mechanism (migrate_pages()) is in charge of allocating
new memory pages given an allocation routine, copying the
memory contents from origin pages to the newly allocated
destination pages, and fixing any memory mappings that refer
to the migrated pages.

Originally, each memory node maintains its own set of LRU
lists: anonymous inactive, anonymous active, file inactive,
file active, and unevictable. We added two lists: anonymous
promote and file promote. Unevictable pages belong to the
unevictable list and are pages in the system that are locked
into memory (typically via mlock()) and cannot be evicted
nor migrated. Every evictable page in the system, depending
on being file-backed or anonymous, will belong to one set of
LRU lists (anonymous lists or file lists), and it will traverse
these by transitioning through different states as depicted in
Figure 4. We also extended the struct page flags which
maintain the status of a page during its existence to add a new
flag: PagePromote. This new flag is used by the OS to mark
that the page in question, which is to be added to the LRU lists,
belongs to the promote list. The memory overhead of these
modifications is negligible since we reused the list pointer on
the struct page to index the pages in the promote lists; we
also reused the space allocated for the page flags to maintain
the newly defined flag.

We implemented the system daemon discussed in Sec-
tion III-B as a new kernel thread, kpromoted, which is
woken up periodically to execute the migration of any pages
sitting in the promote list to a higher tier. This thread’s design
follows those of PFRA for the kswapd eviction daemon: one
kernel thread per NUMA node. This design aims to avoid lock

Source File New Lines Modified Lines
drivers/base/node.c 4 1
drivers/dax/kmem.c 10 0
include/linux/gfp.h 7 1
include/linux/mm.h 6 0

include/linux/mm inline.h 8 1
include/linux/mmzone.h 52 1

include/linux/nodemask.h 6 1
include/linux/page-flags.h 19 6

include/trace/events/mmflags.h 7 1
mm/Kconfig 3 0

mm/memcontrol.c 8 2
mm/migrate.c 1 0

mm/page alloc.c 43 2
mm/swap.c 59 6

mm/vmscan.c 364 7
mm/vmstat.c 16 0

TABLE II
Linux source code modifications measured as number of lines modified.

contention on critical per-node data structures.
Our implementation of the MULTI-CLOCK algorithm is en-

capsulated mostly within mm/vmscan.c and mm/swap.c.
Table II presents how much new code was added for
MULTI-CLOCK and which files were modified in the Linux’s
source code. In total, MULTI-CLOCK inserted 673 new
lines and modified 30 existing lines of code. We extended
mark_page_accessed() to check for pages that are al-
ready referenced and marked as active and are being refer-
enced again to mark such pages with the PagePromote

flag and to move them from their corresponding active list
to the promote list (see transition 10 in Figure 4). We
created a new shrink_promote_list() method that
complements the existing shrink_active_list() and
shrink_inactive_list() methods to handle move-
ments of pages out of the promote list. Migrations to the
upper tier are handled via shrink_promote_list() and
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migration to the lower tier (or evictions) are handled via
shrink_inactive_list(). Both methods result in a
physical frame in the tier being freed after the successful
migration of its contents.

Figure 4 depicts all the states and transitions of the pages.
New pages start with the inactive unreferenced state. Depend-
ing on whether the page was accessed since the last scan or
not, it can move to the inactive referenced state via transition
(1), and (2), can get demoted to the lower tier via (3), or can be
freed via (4). Pages not in LRU can also get added to inactive
unreferenced state via (5). Pages in the inactive referenced
state can either move to inactive unreferenced via (1) or move
to the active list via (6). Pages in the active list with the active
unreferenced state move to the active referenced state using
(7) or (8) if they get accessed. Furthermore, if the page is not
accessed for a long time, the page state changes to inactive
unreferenced via (9). From active referenced state, a page
moves to the promote list if it gets accessed via transition
(10). If pages in the promotion list do not get accessed, they
move to the active unreferenced state again via (11). If they
get accessed in this state, then pages remain in the same state,
as shown by (12). Lastly, kpromoted uses (13) to promote
all the pages found in this state.

V. EVALUATION

In this section, we evaluate the performance of our MULTI-
CLOCK implementation. The goal of our evaluation is to
determine if, when, and how the MULTI-CLOCK is able to
improve the performance of application workloads. We evalu-
ate using diverse workloads such as high memory-consuming
graph applications and key-value stores. We compare MULTI-
CLOCK performance with static tiering, Nimble, AutoTiering,
and Memory-mode. As Nimble uses Linux’s CLOCK (an ap-
proximation of LRU) based default page profiling mechanism,
we do not compare MULTI-CLOCK again with CLOCK or
LRU. We also avoid comparing MULTI-CLOCK with the Least
Frequently Used (LFU) policy as it requires tracking every
memory access, which is impractical. Additional reasons for
not comparing MULTI-CLOCK with other memory tiering tech-
niques such as AMP [22], Thermostat [19], and AutoNUMA-
Tiering [20], are discussed in Section II-D. Finally, we conduct
an in-depth sensitivity analysis to better understand the impact
of each component of MULTI-CLOCK.

A. Experimental Platform
We used a dual-socket Intel Xeon Gold 5218 Processor

with 16 cores per socket for evaluating and comparing the
performance of static tiering, Nimble, AutoTiering-CPM (AT-
CPM), and AutoTiering-OPM (AT-OPM) with MULTI-CLOCK.
This machine has 12 DDR4 (2666 MT/s) DIMMs of 16GB
in capacity each and 4 Intel Optane DC Persistent Memory
(DCPM) of 128GB in capacity each. In total, the available
memory space is 192GB DRAM and 512GB persistent mem-
ory. We used another platform to compare the performance
of static tiering, Memory-mode, and MULTI-CLOCK. This
machine runs a dual-socket Intel Xeon Processor with 24 cores

per socket. The system is equipped with 12 DDR4s (2666
MT/s), each 32GB in capacity and another 12 Intel Optane
DCPM with 128GB capacity per DIMM. Hence, the total
DRAM capacity is 376GB, and PM capacity is 1.5TB. The
only reason for using two separate machines is to expedite
the evaluation process.

B. Workloads

We evaluate MULTI-CLOCK using diverse workloads. Here,
we discuss our results using six different workloads from
Yahoo! Cloud Serving Benchmark (YCSB) [13] and six work-
loads from the GAP Benchmark Suite (GAPBS) [14]. YCSB
workloads are divided into two phases: a load phase and an
execution phase. The load phase is in charge of populating the
back-end key-value store with the required number of records.
On the other hand, the execution phase carries out diverse
types of operations over the back-end. These workloads are
named Workload A, B, C, D, E, and F. Workload A is a
mix of 50% reads, and 50% writes. Workload B is 95%
reads, and only 5% writes. Workload C is 100% read. None
of these workloads inserts new records except workload D,
where new items are added and read. Workload E issues short
ranges queries on the records. And in workload F, a record is
read, modified, and then written back. We also created a new
workload W, which issues 100% writes. For our evaluation,
we used Memcached [3], an in-memory cache service that
uses a large amount of main memory to maintain its data,
as the key-value store back-end of YCSB. One thing to note
is that YCSB’s workload E makes use of SCAN operations
that may or may not be implemented by the different back-
end key-value stores. Memcached does not implement SCAN
operations, making workload E non-operational. Further, the
load phase is the same for all workloads, and most workloads
(all but D and E) do not change the number of records in the
back-end. For all our experiments, we follow the prescribed
execution sequence [24] for the YCSB workloads. Since
workload D changes the number of records in the back-end, the
order of execution is arranged in the following manner: Load
Phase, Workload A, Workload B, Workload C, Workload F,
Workload W, and Workload D. We report the performance of
the six Workloads, excluding the data load phase.

GAPBS is a framework for graph analytics capable of run-
ning a wide variety of graph processing algorithms. It has six
workloads: Breadth-First Search (BFS), Single-Source Short-
est Paths (SSSP), PageRank (PR), Connected Components
(CC), Betweenness Centrality (BC), and Triangle Counting
(TC). For each of the six workloads, GAP first loads the
graph in memory and then executes multiple trials of the
workload. We report the average execution time taken per
trial for the workloads. During the execution phase, the actual
algorithm is executed over the already memory-resident graph
representation of the data.

C. Evaluation Result

To evaluate the overall performance of MULTI-CLOCK, we
first compare MULTI-CLOCK against systems using PM in
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Fig. 5. MULTI-CLOCK, Nimble, AutoTiering-CPM(AT-CPM), and
AutoTiering-CPM(AT-OPM) throughput comparison for YCSB work-
loads. Y axis presents the throughput normalized to static tiering
(higher is better).

static tiering, Nimble, AutoTiering-CPM, and AutoTiering-
OPM. Then we compare the performance of MULTI-CLOCK
with Memory-mode. We configure workloads for all the sys-
tems such that their memory footprints are larger than the
DRAM size and consume enough persistent memory. For both
MULTI-CLOCK and Nimble, we set the number of page scan
to 1024. The scanning interval of MULTI-CLOCK and Nimble
is set to one second as discussed in Section V-E.

1) Comparison With Tiered Memory Systems: We com-
pare the performance of static tiering, MULTI-CLOCK, Nim-
ble, AutoTering-CPM (AT-CPM), and AutoTiering-OPM (AT-
OPM) using YCSB and GAPBS workloads. Figure 5 shows
the performance for YCSB workloads. In Figure 5, the Y-axis
presents the throughput (operations per second) normalized to
static tiering; all the workloads are on the X-axis. MULTI-
CLOCK outperforms static tiering, Nimble, AT-CPM, and AT-
OPM for all the workloads.

For the YCSB workloads, MULTI-CLOCK outperforms static
tiering by 20-132%. MULTI-CLOCK achieves the maximum
throughput gain in Workload D as this workload inserts
new records and modifies the most recent records multiple
times. As MULTI-CLOCK selects the pages that are recently
accessed multiple times for promotion, Workload D and other
workloads with a similar property would get the most benefit
from MULTI-CLOCK. In comparison with Nimble, MULTI-
CLOCK achieves 9-36% better performance as MULTI-CLOCK
promotes pages more selectively than Nimble. The selective
promotion of MULTI-CLOCK helps to reduce the migration
overhead incurred for promoting less qualified pages. When
compared to AT-CPM, MULTI-CLOCK outperforms by 260-
677%. Finally, MULTI-CLOCK achieved 10-352% better per-
formance than AT-OPM. In comparison with MULTI-CLOCK,
AT-CPM and AT-OPM perform worse due to costly software
page fault-based page access tracking as well as the high
overhead of tracking the page history bits for identifying cold
pages.

Figure 6 presents the results of executing different GAPBS’s
workloads normalized to static tiering. The Y-axis shows
the normalized execution time; the X-axis presents all the
workloads. As we can see, MULTI-CLOCK outperforms static
tiering by 4-68% for the GAPBS workloads. When compared

Fig. 6. Performance comparison of GAPBS workloads. Y axis presents
the normalized execution time to the static tiering (lower is better).

to Nimble, MULTI-CLOCK improved the execution time by
1-16%. In both comparisons, MULTI-CLOCK reduces the ex-
ecution time of the SSSP workload the most. Similar to the
YCSB workloads, in GAPBS, MULTI-CLOCK benefits from
the better page selection mechanism for promotions.

In comparison with AT-CPM, MULTI-CLOCK reduces the
execution time by 3-68% for SSP, PR, CC, and TC workloads.
However, AT-CPM shows 3% and 1% better performance than
MULTI-CLOCK for BFS and BC workloads. As AT-CPM tries
to find the best location of the pages, its performance thus
highly depends on the initial placement of the pages. If pages
are already placed in the best locations, AT-CPM needs to
migrate fewer pages. We think the slight performance gain
for BFS and BC workloads might be due to this reason.
On the other hand, MULTI-CLOCK shows better performance
than AT-OPM by 4-62%. Compared to AT-CPM, AT-OPM
induces additional overhead of identifying cold pages and page
demotions, which is the reason for the observed performance.

From Figure 5 and Figure 6 we observe that the MULTI-
CLOCK achieved better performance gain for the YCSB work-
loads than the GAPBS’s workloads. The performance of the
graph processing algorithms can depend on the locality of the
data [25]. We assume that the GAPBS workloads first allocate
memory that would be accessed the most as graph processing
workloads are known to exhibit substantial locality [26]. As
static tiering, MULTI-CLOCK, Nimble, AT-CPM, and AT-OPM
fill the DRAM first, DRAM contains most of the highly
accessed pages. Hence, the performance of the MULTI-CLOCK,
Nimble, AT-CPM, and AT-OPM is close to the static tiering
for most of the GAPBS workloads. However, by selectively
promoting the hot pages from PM to DRAM, MULTI-CLOCK
achieves a slightly better performance on average than other
tiering mechanisms across different workloads.

In Section II-A, we analyzed the workloads from various
benchmarks to show the existence of DRAM-friendly and Tier-
friendly pages. The goal of MULTI-CLOCK is to identify these
pages and place the frequently accessed pages in the DRAM
tier. Workloads with weak locality will not have such a division
of pages and would not benefit from MULTI-CLOCK. On the
other hand, workloads with strong locality will have many
DRAM and Tier friendly pages and can reap benefits from
the dynamic tiering capabilities of MULTI-CLOCK. Among the
YCSB workloads, workload D inserts new data in PM (as
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Fig. 7. Performance comparison of MULTI-CLOCK with Memory-mode.
Y axis presents the normalized performance in (a) throughput (higher
is better) and (b) execution time (lower is better).

DRAM is already full) and frequently accesses the recently
inserted data, thereby exhibiting a stronger locality than the
other workloads. In comparison with static tiering, MULTI-
CLOCK obtains the greatest performance gain (132%) for this
workload.

2) Comparison With Memory-mode:: Finally, we compare
the performance of MULTI-CLOCK with Memory-mode. As
Memory-mode uses all of the DRAM capacity for caching,
to allow for a competitive comparison with MULTI-CLOCK,
we set the workload size to be 4x of the available DRAM
capacity.

In Figure 7, the Y-axis shows performance normalized
to that of static tiering. Figure 7(a) shows the normalized
throughput for the YCSB workloads and Figure 7(b) shows the
normalized execution time for the GAPBS’s PageRank algo-
rithm. For the YCSB workloads, MULTI-CLOCK outperforms
Memory-mode by as much as 9% and operates within 2% of
Memory-mode’s performance. For PageRank, MULTI-CLOCK
outperforms Memory-mode by 21%. To improve application
performance, Memory-mode uses all the available DRAM as
cache, thus hiding the available DRAM capacity from the ap-
plications; it achieves as much as 2% better performance than
MULTI-CLOCK. On the other hand, MULTI-CLOCK exposes all
the available DRAM and PM capacity to the application and
provides performance that is either better or very similar to
Memory-mode.

D. Performance Analysis
To understand the reason behind MULTI-CLOCK’s better

performance outcomes, we first analyze the number of pages
promoted by MULTI-CLOCK and Nimble. Then we see how
many of these promoted pages are getting re-accessed again
from the DRAM tier. This discussion helps us understand
MULTI-CLOCK in more detail.

1) Number of page promotions: In Figure 8, we report the
number of pages being promoted across tiers for both MULTI-
CLOCK and Nimble. In Figure 8, the Y-axis shows the average
number of pages promoted in a time window. We chose the
time window as twenty seconds. The X-axis represents the
time window ID. As we can see from the figure, the average
number of pages Nimble promotes is always 1024. This is
because Nimble always selects a fixed number of pages for

Fig. 8. The average amount of pages promoted in each scan over time. Y-
axis is the average number of pages that are promoted in 20 seconds
window. X-axis presents the time window IDs.

Fig. 9. The average re-access percentage of the promoted pages in each
scan. Y-axis is the average number of promoted pages that got re-
accessed. The average is calculated based on a time window of 20
seconds. X-axis presents the time window IDs.

promotion, and we used 1024 as the fixed value. On the other
hand, MULTI-CLOCK promotes 758 pages on average per scan.
Similar to Nimble, MULTI-CLOCK scans a maximum of 1024
pages, but unlike Nimble, MULTI-CLOCK selects the pages
that have been recently accessed multiple times. If pages that
do not get re-accessed again in the future get promoted to
DRAM, then the overhead to promote such pages can hurt
system performance.

2) Percentage of Pages Re-accessed: Now, we analyze the
number of pages that have been promoted in the last scan, get
re-referenced again from the DRAM. In Figure 9, the Y-axis
shows the re-access percentage, which represents the average
percentage of the recently promoted pages which have been re-
accessed. The average percentage is calculated for 20 second
time window. The time window IDs are shown on the X-axis.
From Figure 9, we can see that pages promoted by MULTI-
CLOCK have 15% higher re-access percentage than Nimble.
In combination with Figure 8, we come to an interesting ob-
servation. Nimble promotes more pages than MULTI-CLOCK,
but a lower percentage of the promoted pages are re-accessed
again. This explains the improved performance results that we
observed with YCSB and GAPBS workloads.

E. Scanning Interval Sensitivity
As described in Section IV, the kpromoted daemon wakes

up after a specific time interval. kpromoted is responsible
for moving pages from the inactive list to the active list, from
the active list to the promote list, and from the promote list to
the DRAM tier. Varying this time interval in MULTI-CLOCK is
expected to affect the performance of the application. We set
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Fig. 10. Throughput comparison of Static tiering, MULTI-CLOCK, and
Nimble with different scan intervals for YCSB Workload A. Y axis
presents throughput (higher is better).

the time interval to 100ms, 250ms, 500ms, 1s, 5s, and 60s and
run the workload A from YCSB with each of these MULTI-
CLOCK versions. Nimble uses a similar daemon thread to
promote pages periodically. Similar to MULTI-CLOCK, we also
evaluated Nimble with different time intervals. From Figure
10 we see that overall MULTI-CLOCK performs better when
compared to Nimble. For larger scan intervals above 5s, we
do not observe much difference due to the lag in the reaction
time. The one-second scan interval was found to be the best
performing for various workloads, but in Figure 10, we only
show the results for YCSB workload A as a representative.
Hence, we chose the one-second scanning interval for all the
other evaluations for MULTI-CLOCK and Nimble.

F. Overhead

Mainly the overhead of MULTI-CLOCK includes the over-
head for promotion and demotion of the pages across different
tiers. While running memory access intensive applications, the
overhead depends on which tier the pages are being accessed
from. First, if DRAM pages are heavily accessed, then there
will be no overhead due to no migration being incurred.
Second, if pages from the PM tier are heavily accessed,
then to reduce access latency, MULTI-CLOCK will identify
these pages and promote them to DRAM, incurring promotion
overheads as well as demotion overheads if the DRAM is
full. However, if the application is memory intensive, then
the promoted pages would be accessed repeatedly from the
DRAM tier, which can benefit the application due to DRAM’s
lower access latency. Thus, for memory-intensive workloads,
MULTI-CLOCK’s benefit will surpass the migration overhead.

VI. RELATED WORK

Emerging persistent memory technologies show promise
in three distinct areas: non-volatility, very large capacity (as
compared to DRAM), and performance suitable for direct
load/store access by the CPU. Most studies on persistent
memory, far too many to list here, focus on the non-volatility,
using it to replace or extend block storage, implement persis-
tent caches, or explore the persistent execution of processes
that can survive power failures [27]–[31]. In contrast, our
work focuses on the large capacity characteristic of persistent
memory and the ability to directly read, write, and execute
data residing in persistent memory.

There have been many studies that explore the use of
different types of memory for the building of hybrid memory
systems. Such systems make use of the different characteristics
of the available memory types to combine them into a hybrid
solution. Most hybrid memory systems do not establish any
specific hierarchy between the different memory types as tiered
memory systems do. As discussed in Section II-D, Thermo-
stat [19], Nimble [11], AMP [22], AutoNUMA-Tiering [20],
and AutoTiering [12] are the recent works on dynamic tiered
memory system.

Yang [32] proposes a design to use persistent memory
as a NUMA node efficiently. This tiered design is aware of
both DRAM and PM nodes and handles promotion/demotion
for anonymous pages only via NUMA balancing. In contrast,
MULTI-CLOCK selects pages for promotion more carefully by
scanning pages periodically and moving them across inactive,
active, and newly added promote list depending on page
access. Moreover, MULTI-CLOCK is capable of managing all
types of pages, anonymous and file-backed pages, making
MULTI-CLOCK a complete solution.

Qureshi et al. [33], Dhiman et al. [34], Ramos et al. [35], and
Lee et al. [36] propose hybrid memory systems, where DRAM
is used as buffer cache, PM is used as the DRAM’s extension,
and a hardware-based solution is used to find best page
replacement policy. In contrast to these works, we provide
a page selection mechanism that can be used to improve the
performance of a dynamic tiered memory system without any
hardware modification, where DRAM and PM both co-exist
as system main memory.

Many replacement algorithms have been studied in the past
in the context of caching [37]–[43]. Our solution is orthogonal
to these efforts and builds upon existing memory replacement
mechanisms, and presents a modified page migration and
replacement algorithm for tiered memory.

Liu et al. [44] provide object-level memory allocation and
migration in hybrid memory systems. Data placement and
migration at the object granularity requires modification of the
existing application to use the new APIs. In contrast, MULTI-
CLOCK operates seamlessly at the kernel level, and existing
applications can be run as-is without any modification.

VII. DISCUSSION

MULTI-CLOCK relies on the page reference bit for clas-
sifying pages according to their frequency of accesses and
characterizing the importance of a page. In the current version,
MULTI-CLOCK does not differentiate between the data read
and write. One possible improvement to this approach is to
also include the dirtiness information for memory pages in
a weighted formula to compute the importance of a page.
By including this extra information, we could weigh the
different types of accesses for a page (read or write) in
the decision of page placement. This additional information
becomes particularly relevant when the underlying memory
hardware exhibits non-uniform latency for the different types
of accesses. For instance, some PM devices, e.g., Intel Optane
PM, are known to have asymmetric read and write latencies.
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The scanning interval for MULTI-CLOCK is 1s as we dis-
cussed in Section V-E. We compared the performance of
MULTI-CLOCK across multiple scanning intervals and chose
the 1s scan interval. However, it could be valuable to dynami-
cally adjust the scanning interval for kpromoted by analyz-
ing the characteristics of the running workload. Additionally,
it will also be interesting to see the performance of MULTI-
CLOCK with varying DRAM and PM ratios.

VIII. CONCLUSIONS

Byte-addressable, high capacity memory such as PM opens
up a new space for optimization of the memory system design
and implementation. In this work we design and develop
MULTI-CLOCK, a dynamic memory tiering system that is
designed to ensure that the right data is in the right tier
at the right time. Unlike some other recent approaches for
tiered systems, MULTI-CLOCK uses both access recency and
frequency to identify potential pages for migration without
adding significant system overhead. We deployed MULTI-
CLOCK in a real system by developing a prototype that runs
CentOS 7 (Linux kernel 5.3.1) and evaluated our prototype
using graph processing and key-value store workloads. Our
results demonstrate that MULTI-CLOCK is able to significantly
improve the performance of these workloads compared to the
state-of-the-art techniques without compromising the amount
of usable main memory made available to these workloads.
MULTI-CLOCK sources can be downloaded at https://doi.org/
10.5281/zenodo.5790897
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ABSTRACT
We argue that wear leveling in SSDs does more harm than
good under modern settings where the endurance limit is
in the hundreds. To support this claim, we evaluate existing
wear leveling techniques and show that they exhibit anoma-
lous behaviors and produce a high write ampli�cation. These
�ndings are consistent with a recent large-scale �eld study
on the operational characteristics of SSDs. We discuss the
option of forgoing wear leveling and instead adopting capac-
ity variance in SSDs, and show that the capacity variance
extends the lifetime of the SSD by up to 2.94⇥.
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1 INTRODUCTION
Wear leveling (WL) in solid-state drives (SSDs) seeks to equal-
ize the amount of wear so that no cells prematurely fail
prior to the end of the SSD’s lifetime [3, 6–8, 10]. While
there are di�erent approaches to implementing WL (from
static [3, 6, 10] to dynamic [7, 8]), the underlying goal is to
use younger blocks with fewer erases more than the older
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Figure 1: The estimated endurance limit of various SSDs in
the past years. We estimate the endurance limit by dividing
the SSD’s TBW (terabytes written: the total amount of writes
the SSD manufacturer guarantees) by the logical capacity.
This estimation is consistent with recent works [21, 22].

blocks. Static wear leveling techniques [3, 6, 10], in particular,
proactively relocate data within an SSD, thereby incurring
additional write ampli�cation for the sake of equalizing the
number of erases. Dynamic wear leveling [7, 8], on the other
hand, combines WL with other SSD-internal tasks such as
garbage collection, reducing the e�ciency of victim block
selection. In other words, WL techniques incur additional
wear-out to increase the overall lifetime of the SSD.

Ideally, the wear leveling algorithm would minimize its
overhead while maximizing its e�ectiveness. However, a
recent large-scale �eld study on millions of SSDs reveals
that the WL techniques in modern SSDs present limited
e�ectiveness and are far from perfect [23]. This study shows
that someWL algorithms are unable to achieve their intended
goal as some of the blockswear out 6⇥ faster than the average.
Furthermore, some SSDs exhibit amedianwrite ampli�cation
factor (WAF) of around 100, although the cause of this cannot
be de�nitive. With the endurance limit of �ash memory
steadily decreasing, as shown in Figure 1, it will become
increasingly challenging to design an e�ective (equal wear)
yet e�cient (low write ampli�cation) wear leveler.

To understand the underlying reasons for the ine�ective-
ness of WL in SSDs, we evaluate three representative WL
techniques [3, 6, 7] that have been compared against a wide
variety of other WLs [5, 10, 15, 24, 28, 30, 33]. Our experi-
ments �nd thatWL algorithms produce a counter-productive
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Table 1: Representative wear leveling algorithms.

Name Type Parameters Principle Comparisons

DP [3] Static Fixed, a prede�ned threshold ()� ) Hot-cold swapping HC [15], 2L [33], EP [30], OBP [10]
PWL [6] Static Adaptive, a initial threshold ()�'8=8C ) Cold-data migration BET [5] and Rejuvenator [24]
DAGC [7] Dynamic Adaptive, no external parameters Adjust GC victim DTGC [28]

result where the erase counts diverge, increasing the spread
rather than reducing it. This happens when the WL attempts
to move data that it incorrectly perceives to be cold into old
blocks. In addition, we observe that WL-induced WAF can
reach as high as 11.49 where WL’s attempt to achieve a tight
distribution of erase count comes at the cost of a high WAF.
Instead of designing a new wear leveling algorithm that

patches these issues, we fundamentally ask if wear leveling is
worth the trouble. Wear leveling exists to maintain the �xed
capacity abstraction, when in reality, the underlying media
for SSDs fail partially [26]. Instead, we explore and quantify
the bene�ts of capacity variance in an SSD that gracefully
reduces its capacity as �ash memories become bad [18]. Our
experimental results show that capacity variance allows up
to 84% more writes to the SSD with wear leveling, and up to
2.94⇥ more writes without WL.

2 WEAR LEVELING: BOON OR BANE?
Motivated to reproduce the results from a recent large-scale
study [23], we examine the behavior of WL algorithms under
a synthetic microbenchmark. We evaluate three represen-
tative wear leveling (WL) algorithms, Dual-Pool (DP) [3],
Progressive Wear Leveling (PWL) [6], Dynamic Adjust-
ment Garbage Collection (DAGC) [7], and Table 1 sum-
marizes their characteristics.

2.1 Experimental Setup
We extend FTLSim [9]1 for our experiments. This prior work
validates the analytical model for SSD performance and thus
focuses on accuratelymodeling SSD-internal statistics, rather
than SSD-external performance such as latency and through-
put. This allows us to simulate the entire lifetime of an SSD
(a few hundreds of TiB written) within a few months and
also observe its internal activities. Table 2 summarizes the
SSD con�guration and policies for our experiments.
To understand the behavior of WL techniques, we syn-

thetically generate workload to control the I/O pattern bet-
ter. All I/Os are small random writes, but the distribution
is controlled by two parameters A and ⌘ (0 < A < 1 and
0 < ⌘ < 1): A fraction of writes go to the ⌘ fraction of the
footprint (hot addresses) [29]. We use A/⌘ to indicate that

1Our extension is available at https://github.com/ZiyangJiao/FTLSim-WL.

the A fraction of writes occur on the ⌘ fraction of the work-
load footprint. Unless otherwise noted, we generate the I/O
workload for the entire logical address space. Prior to each
experiment, we pre-condition the SSD with one sequential
full-drive write, followed by three random full-drive writes
(256 GiB sequential + 768 GiB random write) to put the drive
into a steady-state [31].

2.2 Performance of Wear Leveling
We investigate the performance of wear leveling in the fol-
lowing three aspects: (1) write ampli�cation, (2) e�ectiveness
in equalizing the erase count, and (3) behaviors under di�er-
ent access footprints.
Write ampli�cation. We measure the WL-induced write
ampli�cation (WA) by using a synthetic workload of A/⌘ =
0.9/0.1 for up to 100 full-drive writes (25 TiB). The WL pa-
rameter values we experiment with are similar to those used
in the prior work [3, 6, 7]. Figure 2 shows the write ampli�-
cation, and we make the following four observations. First,
the overall write ampli�cation can be as high as 11.49, in
which 5.4 is caused by WL. This overhead is as much as the
WA caused by garbage collection. This means that for each
256 GiB user data written, wear leveling alone will create an
additional 1.35 TiB of data writes internally. Second, the WA
is sensitive to the WL threshold parameter, )� . Changing
the )� from 10 to 5 for the DP algorithm will amplify the
amount of data written to 1.6⇥. Third, PWL produces a sig-
ni�cantly high WA of 11.49 once the SSD ages beyond 80
full-drive writes. PWL is an adaptive WL algorithm, and it
becomes overly aggressive at a later stage while being dor-
mant during the early stage. Lastly, WA steadily increases
over time as the SSD ages, indicating that SSD aging will
accelerate as more data are written.

Table 2: SSD con�guration and policies. Only the pa-
rameters relevant to understanding the wear leveling
behavior are shown.

Parameter Value Parameter Value

Page size 4 KiB Physical capacity 284 GiB
Pages per block 256 Logical capacity 256 GiB
Block size 1 MiB Over-provisioning 11%
Block allocation FIFO Garbage collection Greedy
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Figure 2: The write ampli�cation caused by wear lev-
eling under a A/⌘ = 0.9/0.1 synthetic workload. The
parenthetical values in the legends are the WL thresh-
old parameters. %,!(50) that aggressively performs
wear leveling at the late stage causes its WAF to be as
high as 11.49.

(a) A/⌘ = 0.9/0.1
with large footprint.

(b) A/⌘ = 0.5/0.5
with large footprint.

Figure 3: The distribution of erase count when full logical
address space is used after writing 25TiB. WL shows the per-
formance anomaly under A/⌘ = 0.9/0.1 workload (Figure 3a).
On the other hand, the bene�t from wear leveling is neg-
ligible compared to not running at all under A/⌘ = 0.5/0.5
(Figure 3b).

Wear leveling e�ectiveness. We measure the distribution
of erase count under a synthetic workload as shown in Fig-
ure 3. We perform 100 full-drive writes (25 TiB) using a work-
load with A/⌘ = 0.9/0.1 (Figure 3a), and with A/⌘ = 0.5/0.5
(Figure 3b).

With A/⌘ = 0.9/0.1, as shown in Figure 3a, all con�gu-
rations of DP and PWL show a worse distribution of erase
counts than not running WL (#>,!). DP and PWL show a
concave dip in the CDF curve, indicating a bimodal distri-
bution of erase counts. NoWL, on the other hand, shows a
nearly vertical line, meaning that the erase counts are more
tightly distributed. We consider this to be a performance
anomaly of wear leveling because it behaves the opposite
of what is expected. We examine the bimodal distribution
of ⇡% (5) and �nd that the blocks associated with the cold
pool are older than those in the hot pool. The DP algorithm’s
underlying assumption is that blocks containing hot data are
older than blocks with cold data, and it compares the erase
count of the oldest block in the hot pool and the youngest
block in the cold pool. If the youngest block in the cold pool

(a) A/⌘ = 0.9/0.1
with small footprint.

(b) A/⌘ = 0.5/0.5
with small footprint.

Figure 4: The distribution of erase count when only 5% of
the logical address space is used. The red dot indicates the
average erase count for NoWL.

happens to be older than the oldest block in the hot pool,
however, it will still trigger the swap between the two blocks,
causing this inversion. DAGC also achieves good evenness
but ampli�es data writes by 18% compared to #>,!.
On the other hand, with a uniformly random workload

(Figure 3b), there is a negligible di�erence among DP, PWL,
and NoWL. This is because, with a uniform workload, all
blocks are used equally, and there is little room for wear
leveling. We do observe, however, that ⇡% (5) still exhibits a
performance anomaly though at a smaller degree than un-
der A/⌘ = 0.9/0.1 (cf. Figure 3a) As for DAGC, the overall
e�ciency for garbage collection is reduced as its victim se-
lection considers both valid ratio and erase count, incurring
15% more data writes than NoWL.

These experiments show that WL algorithms are a double-
edged sword. As shown in Figure 3a, it can make the distri-
bution of wear worse than not running WL at all. On the
other hand, it can achieve good wear leveling but at a high
cost of accelerated overall wear state.
Small access footprint. Here we explore the performance
of wear leveling when the accesses are restricted to a small
address space (5% of total) using two synthetic workloads,
A/⌘ = 0.9/0.1 and A/⌘ = 0.5/0.5, as shown in Figure 4.

Overall, we observe that most WL techniques are e�ec-
tive in equalizing the erase count, as shown by the near-
vertical CDF curve in both Figure 4a and Figure 4b. #>,!,
on the other hand, shows a bimodal distribution between
used blocks and unused blocks in both workloads.We also ob-
serve that when the workload is skewed (Figure 4a), the WL
techniques achieve this evenness by amplifying the amount
of data writes, as shown by the rightward shift in the CDF
curves. For a uniform workload, on the other hand (Fig-
ure 4b), the overall write ampli�cation from wear leveling is
much lower as data are equally likely to be invalidated.

Unlike the results from Figure 3a and Figure 3b where the
entire logical address space is written, WL is e�ective only
when a small fraction of the address space is used, restricting
its overall usefulness.
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2.3 Summary of Findings
Table 4 summarizes the e�ectiveness of WL from our ex-
periments using synthetic workloads. Only when the access
pattern is uniform and footprint is small, WL is bene�cial;
otherwise, it is detrimental or has negligible e�ect.
Instead of proposing a new wear leveling algorithm that

solves both the write ampli�cation overhead and perfor-
mance anomaly, we question the circumstances that require
wear leveling and examine its necessity in the next section.

Table 4: Qualitative e�ectiveness of wear leveling.

Skewed access Uniform access

Large footprint Anomalous
(Figure 3a)

Negligible
(Figure 3b)

Small footprint Write ampli�ed
(Figure 4a)

E�ective
(Figure 4b)

3 CASE STUDY ON CAPACITY VARIANCE
If the interface were to allow a reduction in the SSD’s ex-
ported capacity,WL becomes unnecessary as it does not need
to ensure that all blocks wear out evenly. The idea of capac-
ity variance is not new [18]: the Zoned Namespace (ZNS)
speci�cation allows zones to be taken o�ine [34], e�ectively
shrinking the SSD’s capacity. In this section, we study such
a case of capacity reduction and the overall lifetime of the
SSD with and without WL.
We implement a capacity-variant SSD on the extended

FTLSim [9] from § 2 and use the SSD con�guration in Table 2
for our evaluation. However, we set the endurance limit to
500 erases, a typical level for QLC [21, 22], and once a block
reaches this, it will be mapped out and no longer used in the
SSD, e�ectively reducing the SSD’s physical capacity. For
the �xed capacity SSD, the SSD is considered to reach its end
of life once the physical capacity becomes smaller than its
logical capacity: the SSD is considered to have failed once

this happens. On the other hand, the capacity-variant SSD
gracefully reduce its capacity below the initial logical space,
to a user de�ned threshold (if set) or as low as the access
footprint for the workload. For a capacity-variant SSD, if
the logical capacity can no longer be reduced without losing
user data, the SSD is considered to have failed.

For the workload, we use nine real-world block I/O traces
that were collected from running YCSB [36], a virtual desktop
infrastructure (VDI) [19], and Microsoft production servers
(WBS, DTRS, DAP-PS, LM-TBE, MSN-CFS, MSN-BEFS, RAD-
BE) [17]. In particular, the Microsoft production traces are
outdated, but we use it to include a wider variety of work-
loads. The traces aremodi�ed into a 256GiB range (the logical
capacity of the SSD), and all the requests are aligned to 4KiB
boundaries. Similar to the synthetic workload evaluation, the
SSD is pre-conditioned with one sequential full-drive write
and three random full-drive writes on the entire logical space.
The traces run in a loop inde�nitely, continuously generating
I/O until the SSD becomes unusable. Table 3 summarizes the
trace workload characteristics.

We evaluate the following eight designs.
Fix_NoWL runs no WL on a �xed capacity SSD.
Fix_DP runs ⇡% (5) on a �xed capacity SSD.
Fix_PWL runs %,!(50) on a �xed capacity SSD.
Fix_DAGC runs ⇡�⌧⇠ on a �xed capacity SSD.
Var_NoWL runs no WL on a capacity-variant SSD.
Var_DP runs ⇡% (5) on a capacity-variant SSD.
Var_PWL runs %,!(50) on a capacity-variant SSD.
Var_DAGC runs ⇡�⌧⇠ on a capacity-variant SSD.

Figure 5 shows the amount of data written to the SSD
before failure for the nine I/O traces. The ~-axis is in terms
of the number of drive writes. For example, for 100 drive
writes, 25TiB of data have been written. Overall, we observe
that with �xed capacity SSDs, running WL is better than not
running WL, but only by a small margin: �8G_⇡% extends
the lifetime by only 13% on average compared to �8G_#>,!,
and with workloads such as VDI and DTRS, �8G_⇡% and
�8G_⇡�⌧⇠ perform worse than �8G_#>,!. However, with

Table 3: Trace workload characteristics. YCSB-A is from running YCSB [36], VDI is from a virtual desktop infrastruc-
ture [19], and the remaining 7 (from WBS to RAD-BE) are from Microsoft production servers [17].

Workload Description Footprint (GiB) Avg. write size (KiB) Hotness (A/⌘) Sequentiality

YCSB-A User session recording 89.99 50.48 64.69/35.31 0.49
VDI Virtual desktop infrastructure 255.99 17.99 64.45/35.55 0.14
WBS Windows build server 56.05 27.82 60.34/39.66 0.02
DTRS Developer tools release 150.63 31.85 54.20/45.80 0.12

DAP-PS Advertisement payload 36.06 97.20 55.02/44.98 0.16
LM-TBE Map service backend 239.49 61.90 60.29/39.71 0.94
MSN-CFS Storage metadata 5.58 12.92 69.28/30.72 0.25
MSN-BEFS Storage backend �le 31.42 11.62 70.18/29.82 0.03
RAD-BE Remote access backend 14.73 13.02 65.51/34.49 0.33
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Figure 5: Evaluation of the presence and absence of wear leveling in both a �xed capacity and a capacity-variant SSD. Capacity
variance extends the lifetime by 86% on average, and as high as 2.94⇥ in the case of RAD-BE.

Figure 6: Write ampli�cation caused by WL and GC. While a large sequential workload such as LM-TBE only has a low write
ampli�cation overhead of 1.26, most other workloads exhibit high wear leveling overhead for DP and DAGC, reaching as high
as 6.9. Without wear leveling, the average write ampli�cation is only 2.89.

capacity variance, not runningWL is better than runningWL
by a large margin: +0A_#>,! extends the lifetime by 86%
on average, and as much as 2.94⇥ for RAD-BE. We explain
this result by the measurement of write ampli�cation caused
by wear leveling, shown in Figure 6.
Workloads with a relatively small footprint. We ob-
serve that capacity variance is most e�ective on workloads
such as DAP-PS, MSN-CFS, and RAD-BE. These workloads are
characterized by a small access footprint where gracefully
reducing the capacity achieves more lifetime extension than
WL. Speci�cally, capacity variance without wear leveling
allows 2.94⇥ more data to be written to the SSD for RAD-BE.

MSN-BEFS also has a small footprint, but we observe a
comparatively lower lifetime extension of 0.91⇥. In fact, the
lifetime of �8G_#>,! isn’t too far o� from that of �8G_⇡% ,
only 5% less. The reason for this is due to garbage collection:
This workload contains a lot of small random writes, causing
garbage collection to be active, dwar�ng the WL-induced
WAF. Because of this, MSN-BEFS only allows 145 full-drive
writes (36.27 TiB) even for the capacity-variant SSD.
Workloads with a relatively large footprint. LM-TBE and
VDI are two workloads with the largest footprint, and the
bene�t of capacity variance is diminished in such workloads.
However, we �nd that capacity variance still achieves the
similar lifetime extension compared to the best case via WL
under this scenario: for VDI, �8G_%,! extends the lifetime by
only 3.1% compared to+0A_#>,!, and for LM-TBE, �8G_⇡%
extends it by only 3.6% compared to +0A_#>,!. A large
footprint means that there is little to gain from reducing
the capacity as data are still in use. For LM-TBE, the large
sequential write with relatively high uniformity causes the
write ampli�cation for WL to be small, as low as 1.18. This
allows wear leveling to squeeze more writes out of the SSD.

DTRS is one of the rare occasions where not running WL
is better in a �xed capacity SSD. �8G_#>,! allows 18%
more writes compared to �8G_⇡% , and 7% more compared
to �8G_⇡�⌧⇠ . This is due to the high write ampli�cation
of wear leveling. Although the write access pattern of DTRS
is fairly uniform, we suspect that a wear leveling anomaly
occurred, causing a subset of blocks to age rapidly. Introduc-
ing capacity variance extends the lifetime for all three cases,
however, with +0A_#>,! extending the lifetime by 24%
compared to �8G_⇡% . +0A_%,! outperforms +0A_#>,!,
but the di�erence is only 3%.

4 DISCUSSION AND RELATEDWORK
Wear leveling is a mature and well-understood topic in both
academia and industry, but getting it right has proven to be
di�cult as shown by the recent large-scale �eld study [23].
This study on millions of modern SSDs shows that some
blocks wear out 6⇥ faster than the average, revealing the in-
e�ectiveness of wear leveling algorithms. We discuss related
work on wear leveling and �le system support necessary for
capacity variance.
Wear leveling and write ampli�cation. There exists a
large body of work on garbage collection and its associ-
ated write ampli�cation (WA) for SSDs, from analytical ap-
proaches [9, 12, 27, 37] to experimental results [4, 16, 38].
However, there is surprisingly limited work that measures
the WA caused by wear leveling (WL), and they often rely on
a back-of-the-envelope calculation for estimating the overhead
and lifetime [39]. Even those that perform a more rigorous
study evaluate the e�cacy of WL by measuring the amount
of writes the SSD can endure [6, 14, 20, 35] or the distribution
of erase count [1, 3, 13]; only the Dual-Pool algorithm [3]
present the overhead of WL.
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File system support. Using a capacity-variant SSD would
need support from the �le system. Thankfully, the current
system design canmake this transition less painful for the fol-
lowing reasons. First, the TRIM command, widely supported
by interface standards such as NVMe allows the �le system
to explicitly declare that the data (at the speci�ed addresses)
are no longer in use. This allows the SSD to discard the data
safely and would help determine if the exported capacity can
be gracefully reduced. Second, modern �le systems can safely
compact their content so that the data in use are contiguous
in the logical address space. Log-structure �le systems such
as F2FS support this more readily, but �le system defragmen-
tation can also achieve the same e�ect in in-place update �le
systems such as ext4. Lastly, zoned namespace (ZNS), a new
abstraction for storage devices that gained signi�cant inter-
est in the research community [2, 11, 32], already supports
shrinking the device capacity by taking zones o�ine [34].
The capacity variance potentially incurs overhead for the
�le system to relocate data from one logical space to another.
Naïvely, the �le system would relocate not only the data at
the high address space, but also update any metadata for
the block allocation and inode. A more advanced command
such as SHARE [25] can be used to reduce the relocation
overhead.

5 CONCLUSION
From a system design standpoint, it is easier to build the
storage stack with a �xed capacity abstraction. However, this
abstraction requires the implementation of a wear leveler
in SSDs that is surprisingly both ine�ective and ine�cient.
Furthermore, with increasing �ash memory block size and
decreasing endurance limit for �ash, we expect the wear
leveling problem to exacerbate in the near future. We believe
it is necessary to re-think the bene�ts and costs of the wear
leveler in SSDs and the block interface abstraction.
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Abstract—SSDs are becoming mainstream data storage de-
vices, replacing HDDs in most data centers, consumer goods,
and IoT gadgets. In this work, we ask an uncharted research
question: What is the environmental conditions’ impact on SSD
performance? To answer it, we systematically measure, quantify,
and characterize the impact of various commonly changing envi-
ronmental conditions such as temperature and humidity on the
performance of SSDs. Our experiments and analysis uncover that
exposure to changes in temperature and humidity can significantly
affect SSD performance.

Index Terms—robust performance, SSDs, design of tests.

I. INTRODUCTION

Mitigating environmental impacts from temperature and
humidity has been a challenge for all kinds of computer
systems, from high-performance supercomputers [1] to edge
computing platforms [2]. Such environmental impacts have
caused severe damage to large data centers, leading to long-
duration service outages in the past. For example, Amazon’s
AWS and Microsoft’s Azure datacenter failures were caused
by unexpected weather in 2021 [3], 2020 [4], and 2018 [5].
Interestingly, a significant number of cases are caused by the
storage system’s performance degradation and failure under
such impacts [6]. Therefore, system-level online testing for
appropriate diagnosis is critical towards the robust performance
and reliability of storage systems while operating under various
environmental conditions [7]. In the storage world, many Hard
Disk Drives (HDD) are being replaced by flash-based Solid
State Drives (SSD) by most data center providers worldwide for
improved performance and reliability of SSDs over HDDs [8],
[9]. We find very scares literature that identifies SSD failures
in adverse environments [10], [11], [12], [13]. But none of the
studies present the fine-grained runtime and post-performance
effects of SSDs exposed to various commonly experienced
temperatures and humidity. We believe the root cause of the
vulnerability may be essentially different for SSDs compared to
HDDs, as SSDs rely on integrated circuit (IC) modules, which
may be gradually impacted by temperature and humidity [14],
[15], [16] than HDDs’ mechanical components. So, it is very
important to carefully design controlled accelerated lab tests
for high significance diagnoses that can later be used to predict
storage failure and prevent data loss.

SSDs consist of the components such as NAND cells, mem-
ory controller, SATA/NVMe interface, onboard DRAM, capac-
itors, and other integrated circuits [17]. How the temperature
and humidity impact SSDs would be the reflection of the effects
of temperature and humidity on these internal components of
SSDs. We found much evidence from the literature [10], [14],
[18], [19], [20] on the solid-state in physics that shows that the
high-temperature age the NAND cells more quickly than at the
normal temperature due to the acceleration of charge leakage

(i.e., retention loss) at a superlinear rate. Moreover, previous
researches [15], [16] on electron devices such as capacitors
and ICs found that the humidity levels impacted the lifetime
of the capacitors and performance of ICs, due to an increase
in interconnect capacitance and dielectric loss. Therefore, our
core insight is that the SSD performance is high-likely to
be impacted by changes in temperature and humidity, as the
literature [10], [14], [16], [18], [19], [20] shows scattered
evidence of various components of SSD such as NAND flash
cells, ICs, and capacitors are individually impacted.

In this paper, we design accelerated system-level online tests
to understand the runtime and post-performance effects of var-
ious commonly experienced temperature and humidity changes
on SSDs manufactured by multiple vendors. We provide an in-
depth analysis of how the SSD performance is impacted under
a range of realistic environment settings. In particular, this is
the first work to investigate the following research questions
(RQs):

RQ1: What are the runtime impacts of temperature and humid-
ity changes on SSD performance?

RQ2: What are the post-impacts of exposure to temperature
and humidity?

RQ3: How do the impacts of the exposure to temperature and
humidity on SSD performance vary across different SSD types
and I/O operation types (e.g., read and write)?

To ensure the high significance of our diagnoses and repro-
ducibility of our experiments, we repeat each experiment over
six new out-of-the-box SSDs. In total, we tested over a hundred
SSDs to derive the results presented in this paper. We ensured
that the humidity and temperature values were always within
the vendor-specified limits for all our experiments. However,
by the end of each experiment, many SSDs came out bruised
due to post impacts. Some SSDs succumbed to their adverse
aging effects due to our accelerated experiments performing
a large amount of I/Os. Thus, one of the biggest challenges
of this study was not being able to reuse the same SSD for
multiple experiments, as that would impact the correctness of
our observations. The high cost of data collection and long
experimentation time perturb us from exhaustively collecting
data at every possible temperature and humidity within vendor-
specified limits. We collect and analyze a large amount of
sensor and performance data from each experiment using
various I/O tools. Here, we share our selected findings and
observations that we could conclude with high statistical signif-
icance. Anonymized experimental data is being made publicly
available at https://github.com/adnanmaruf/SSD-Temp-Humid
for the research community to understand better, model, and
design alternative solutions to overcome the adverse effects.
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(a) NAND Flash Cell (b) Cell Voltage Threshold
Fig. 1. NAND Flash cell types.

II. BACKGROUND

Among many components of an SSD, NAND flash cells,
DRAM, memory controller, capacitors, and ICs are the key
ones. In this section, we briefly discuss the details of some of
these internal components of the SSD.

[NAND flash cells] are used in SSD devices because of
their density, durability, cost, and performance. NAND flash
uses Floating-Gate MOSFET (FGMOS) transistors to store
data. Fig. 1a shows a simple FGMOS cell. Similar to the
MOSFET transistors, the FGMOS acts like an electrical switch
where current flows between the source and drain terminal. The
MOSFET channel becomes conductive when a voltage greater
than the threshold voltage (V 1) is applied to the control gate
(CG). Instead of only the CG in MOSFET, in FGMOS, there
is another gate called floating gate (FG) to control the flow of
current. The FG is separated from the CG and the MOSFET
channel by the oxide layer. When a high positive voltage is
applied to the CG and a high negative voltage is applied to the
source, electrons tunnel through the thin oxide layer and reach
the FG. This operation is called tunneling. Electrons trapped
inside the FG stay there even after the tunneling operation,
making the FGMOS a non-volatile memory cell that can store
data. When FG is charged with electrons, the threshold voltage
is increased to V 2 (V 2>V 1, e.g., see SLC in Fig. 1b) and
the channel will be conductive only when a voltage greater
than the V 2 is applied to the CG. Now, depending upon the
voltage at which the channel conducts, we can read the bit
stored within this FGMOS [21]. This is how data is read from
the NAND flash cell. As shown in Fig. 1b, a single-level cell
(SLC) stores a single bit, either 0 or 1 differentiated with one
threshold voltage, multi-level cell (MLC) stores two-bit data
differentiated with three threshold voltages, and triple-level cell
(TLC) stores three-bit data differentiated with seven threshold
voltages to read the data.

Tunneling is also used to release the electrons from the FG.
This time a high negative voltage to the CG and high positive
voltage is applied to the source, which is the erase operation of
the NAND flash. The tunneling used for both writes and erase
operations gradually deteriorates the thin oxide layer, allowing
the electrons to get inside and out from the FG more freely.
This is known as the retention loss or charge leakage of the
NAND cell. Such retention loss leads to an increase in the
raw bit error rate (RBER). Thus, different methods like read-
retry, error-correcting code (ECC) bits are used to ensure the
correctness of the data at the cost of increased I/O latency of
the read and write operations.

Fig. 2. Testbed for SSD environmental vulnerability tests.

[Integrated Circuits (IC)] are key elements in modern
electronics. A set of electronic components, e.g., resistors,
transistors, capacitors, etc., are integrated into a small semi-
conductor material-based chip. Thus, ICs are a magnitude
smaller, high-performing, cost-efficient compared to discrete
components. The fabrication process of ICs has two main
processing, Front-end-of-line (FEOL), when IC components are
formed directly on the semiconductor material like silicon, and
Back-end-of-line (BEOL), when all components are integrated
to interconnect them with metal wiring.

[Chip capacitors] are another key component in SSDs
as almost all ICs use capacitors. The volatile memory, i.e.,
random access memory unit used in the SSD, is mainly based
on capacitors. In a capacitor, electrodes are separated by a
dielectric medium such as air, vacuum, paper, titanium, etc. The
metallic electrodes hold the charge, and the electricity starts
to flow once the plates are connected. The capacitance of the
capacitor depends on the area of the metal plates, the distance
between the plates, and the dielectric material.

III. EXPERIMENTAL METHODOLOGY

This section describes our testbed setup, experiment se-
quences in different temperature and humidity levels, bench-
mark implementation, and performance metrics. Our experi-
ments are designed to perform controlled tests on the SSD un-
der different environmental conditions to capture performance
impact accurately.

A. Experiment Setup
To ensure that the temperature and humidity impacts are only

applied to the SSD and are isolated from the other compo-
nents of our host machine, we use a specially designed test
chamber [22] to conduct the experiments. Our test chamber can
maintain a steady-state temperature and humidity without being
affected by each other or external environmental conditions.
The host machine and the test chamber are placed in an isolated
room with HVAC to keep the room temperature and humidity
constant during the experiments. We have set up our testbed
to ensure that only the SSD is exposed to the temperature and
humidity control. At the same time, the other components of
the host machine are kept under constant room temperature
and humidity. The full setup is illustrated in Fig. 2. The main
components of the testbed include a host machine, the SATA
extension cables, the test chamber, and the SSD unit under test.
The SSD is extended from the host machine connector using
SATA extension cables through a sealed portal on the side of
the test chamber. The host machine runs the I/O benchmark
while the test chamber controls the environmental conditions
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TABLE I
TESTBED SPECIFICATIONS.

Component Specs
Test Chamber AES LH-1.5 [22]
Host Server Optiplex9020
Processor Intel(R) Core(TM) i7-4770 CPU, 3.4GHz

Cores, L3, DRAM 16 Cores, 8192K,16GB
Operating System Ubuntu 16.04 LTS (4.4.0-137-generic)

SSD Capacity 120 GB
SSD Type SLC, MLC, and TLC

SATA Version SATA 3.2, 6.0 Gb/s

TABLE II
EXPERIMENT SEQUENCES.

Exp. ID Sequence

1 22.5°C, 50RH → (22.5-60)°C, 50RH → 60°C, 50RH
→ 60°C, (20-80)RH → 60°C, 50RH

2 22.5°C, 50RH → 50°C, 50RH
3 22.5°C, 50RH → 60°C, 50RH
4 60°C, 80RH → 60°C, 50RH
5 60°C, 20RH → 60°C, 50RH
6 70°C, 80RH → 10°C, 80RH
7 60°C, 50RH → 60°C, 80RH → 60°C, 50RH
8 22.5°C, 50RH → 50°C, 50RH → 22.5°C, 50RH

to which SSD is exposed. Temperature and humidity sensors
are placed inside the chamber close to the SSD for chamber
feedback control.

Table I shows the hardware and software specifications used
in our experiments. The test chamber we purchase is from the
AES temperature and humidity environmental chamber product
series. Industries also use such test chambers to perform prod-
uct characterization and testing [22]. The test chamber is capa-
ble of adjusting the temperature from 5°C to 94°C and relative
humidity from 10% to 98%. It is equipped with a programmable
automatic controller. After the temperature and humidity have
reached the control setpoint during our experiments, we wait
ten extra minutes before starting the I/O benchmark to avoid
fluctuations. One limitation of this test chamber is that reducing
relative humidity at lower temperatures requires an additional
air dryer. Our test chamber is not capable of operating below
50 RH relative humidity when the temperature is below 20°C.
For this reason, we do not include characterization for both low
relative humidity and low temperature in our test sequences.

B. Experiment Sequences

Table II shows our experiment sequences varying the temper-
ature and humidity. In total, we listed eight sequences. Each of
the experiments at any particular environmental condition listed
in Table II is six hours long. For each run of the experiment
sequences in Table II, we used out-of-the-box SSDs to avoid
post-impacts of the previous experiments. Before starting each
experiment sequence, we preconditioned the SSDs to make
them reach a steady state. Preconditioning is a process of
applying workload to an SSD to move it from the initial fresh-
out-of-the-box state to a state where the steady performance
of the device can be reproduced while repeatedly running
the same experiments. For the trusted operational range of
our SSDs, we conduct all experiments within vendor-specified
limits in the datasheet (e.g., 10°C to 70°C). To ensure statistical
significance and reproducibility of experiments, we conducted
each of the experiment sequences six times. A new SSD is

used from the three types (SLC, MLC, and TLC) for each
experiment sequence in Table II repeated six times, and we
present the average performance observed across them. We
conduct experiments with only one SSD in the test chamber for
better accuracy of our results. We also performed experiments
over other sequences, but we only report the results that
were interesting, and we could conclude with high statistical
significance. For example, as we did not observe any impact
for the humidity change at the room temperature, so we do not
include that in Table II.

One of the biggest challenges of this study was not being
able to reuse any SSDs for multiple experiments. Thus, these
experiments are expensive and time-consuming, so designing a
good test sequence is very important. First, to resemble the nat-
ural exposure to various temperatures and humidity while SSDs
are deployed within electrical vehicle systems, IoT devices, and
distributed data centers, we expose SSDs to continuous change
in both the temperature and humidity. Specifically, Experiment
ID 1 (Table II) simulates abrupt environmental factor changes
over time while SSDs are in use. The temperature is varied
within 22.5°C to 60°C and humidity is varied within 20RH
to 80RH. 60°C and 50RH is the most common condition
we found across multiple systems while processing. In idle
state, 22.5°C and 50RH is the most common condition. Only
while datacenter water cooling systems are fully active at high
temperatures, we see high humidity of 80RH. We found an
interesting impact on the performance of the SSDs, and to
understand the impacts better, we conducted more controlled
experiments changing only one of the environmental factors,
keeping the other unchanged.

In the next five experiments, we capture the runtime effects
of exposure to change in temperature or humidity. Thus,
first, we benchmark SSD for six hours at the initial state
of temperature and humidity, then we change the chamber
conditions to the final state of temperature and humidity at
which we benchmark SSDs again. We compare the performance
between the initial and final states. In Experiment IDs 2 and 3
(Table II), we increase the temperature from the room condition
(22.5°C) to high (50°C and 60°C) at room humidity (50RH).
We observed a high positive impact on the SSD bandwidth
at 60°C. We also experimented with varying the humidity at
room temperature. However, we did not observe any impact
on the humidity change at the room temperature. Then, we
pick the best performing temperature (i.e., 60°C) to observe
the impacts of decrease (Experiment ID 4 in Table II) and
increase (Experiment ID 5 in Table II) in humidity compared
to room level humidity. We found that decreasing humidity
impacts the SSD performance positively. Next, to observe the
effects of temperature decrements, we reduce the temperature
within vendor-specified limit, i.e., 70°C to 10°C at 80RH in
Experiment ID 6 (Table II). Note that although we observe the
best performance at low humidity, we could not experiment
with the temperature drop at a lower humidity level due to test
chambers’ limitations. We also surveyed that most test cham-
bers have a similar limitation. Moreover, due to the inversely
proportional relationship between temperature and humidity,
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Fig. 3. (a) Tail latencies can improve up to 50% while running experiments on SSDs exposed to varying temperature and humidity (Latency - Lower
the better); (b) SSDs can show higher average bandwidth at high temperature (50°C and above); (c) SSDs tail latencies decrease when humidity level
decreases; and (d) tail latencies increase when humidity level increases.

this condition is least likely to happen in real environments.
Finally, we observe the post-impacts of the humidity and

temperature change in Experiment IDs 7 and 8 (Table II).
The initial and the final state of these experiments are the
same. We compare the performance of benchmarks before and
after being exposed to change in humidity and temperature.
Particularly, in Experiment ID 7 (Table II), we run a six-
hour experiment at room humidity and the best-performing
temperature (i.e., 60°C). Then we expose SSD to high humidity
and finally set back to room humidity to run our second set of
six-hour experiments. Similarly, in Experiment ID 8 (Table II),
we measure the post impacts of the increase in temperature.
We conducted Experiment ID 8 (Table II) at room humidity
rather than best performing low humidity because of the same
above-explained chamber limitation that obstructs attaining low
humidity.

C. I/O Benchmark Configuration

In this work, we use the popular open-source tool FIO
(Flexible I/O) benchmark [23] to generate I/O workloads for
the SSD. The FIO is configured to use the “libaio” I/O engine,
with an I/O depth of 16, 50:50 read/write ratio, and I/O sizes of
4KB to 1MB to better mimic scenarios where the I/O queries
by a real application stack. The I/O pattern is configured to be
random since usually, it is the bottleneck I/O type to meet the
service level agreements (SLA) in latency-critical applications.
All the analyses presented in section IV, if not specifically
mentioned, show the I/O performance for the mixed workloads
with both read and write.

D. Performance Metrics

Among other performance metrics, tail latency is a critical
metric in many real applications such as cloud computing
and autonomous vehicles. Depending on the application, the
tail percentile target varies. In this paper, we cover a broad
range of tail latency percentiles at 90th, 95th, 99th, 99.9th,
and 99.99th to account for different scenarios. The other
metric we characterize is the I/O bandwidth as IOPS. IOPS
captures the SSD operation throughput. We found the tail
latency and the bandwidth are impacted the most compared to
the other metrics, e.g., average latency and throughput. The tail
latency and the bandwidth are also standard SSD performance
metrics evaluated in other works [2], [24]. As this study is
conducted using real SSDs and not an emulated SSD, due to
the proprietary internal details of SSD such as flash transition

layer, we cannot directly instrument the internal characteristics
of SSDs such as bit flip rate and read retries.

IV. RESULTS AND ANALYSIS

In this section, we discuss the results and analysis from
the experiments we performed on the SSDs. We observed that
among SLC, MLC, and TLC SSD types, SLC has very minimal
impacts. Hence, we only discuss the results for the MLC and
TLC using the most impacted metrics. We begin by discussing
how SSD performance is affected during runtime temperature
and humidity change. Then, we discuss the post-effects of
temperature and humidity on SSD performance. Finally, we
discuss the long-term impact of temperature and humidity.

Counter-intuitively, we observed that the tail latencies
improved 50% after SSDs were exposed to abrupt temper-
ature and humidity changes. To the best of our knowledge, we
did not find any prior work that studies the performance impact
of the SSDs exposed to temperature and humidity. So, in search
of finding motivation, we begin our experiments to replicate
abrupt environmental changes in temperature and humidity in
Experiment ID 1 (Table II). As discussed in section I, we see
disaggregated evidence from the literature [10], [14], [16], [18],
[19], [20] that individually various components that are used
within SSDs such as NAND flash cells, ICs, and capacitors are
impacted. Thus, we anticipate the overall performance of SSDs
to be impacted as well. To verify the above anticipation, in this
experiment, we first measure the performance of the SSDs at
the room condition, i.e., 22.5°C, 50RH. Then while running the
workload, we increase the temperature and humidity. Finally,
we measure the performance at 60°C, 50RH. Experiment ID 1
(Table II) shows the stages of this sequence. Fig. 3a shows the
percentage decrease in tail latency for TLC and MLC SSDs.
This observation motivated us to further systematically study
the impact of both temperature and humidity.

We found that runtime temperature changes mostly
affects the TLC SSDs. To find the impact of the temperature
changes, we first analyze the performance of the SSDs at high
temperatures in room humidity in Experiment IDs 2 and 3
(Table II). From Fig. 3b we observe that TLC SSDs show 51%
better average bandwidth than the room condition at 50°C, and
67% better average bandwidth at 60°C. MLC SSDs showed a
considerably small amount of improvements in bandwidth at a
higher temperature. We have observed the runtime effects of the
temperature changes mostly on the TLC NAND flash devices.
When temperature increases, electrons can move more freely
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Fig. 4. Temperature decrement shows a lower bandwidth for TLC SSDs.

between the floating gate (FG) and channel [14]. We assume
that the high cell electron flow due to temperature increment
helps distinguish different threshold voltage levels easily (as we
discussed in sec. II). Thus, TLC flash provides faster read/write
operations. On the other hand, in MLC flash, there is a higher
difference among the three threshold voltage levels. Hence, this
small increase in the flow of electrons does not impact the MLC
SSDs at all.

Next, we observe the impact of the humidity changes on
the SSD performance. We found that SSD performance
deteriorates at high humidity level. We first analyze the
impact of the humidity decrements and increments at room
temperature. However, we did not observe any performance
changes. Then we pick 60°C for varying the humidity level
as we observed high bandwidth gain at this temperature in
the previous observation. We perform Experiment IDs 4 and
5 (Table II) to observe the impact of humidity change at a
high temperature of 60°C. In Experiment ID 4 (Table II),
humidity decreases from 80RH to 50RH, and in Experiment
ID 5 (Table II), humidity increases from 20RH to 50RH. In
Fig. 3c, when humidity decreases, the tail latency decreases up
to 9% for TLC SSDs and 7% for MLC SSDs. In Fig. 3d, the
tail latency increases when the humidity increases. Although
the TLC SSDs show a very little performance degradation,
the 99th tail latency of the MLC SSDs can increase up to
18%. We anticipate this performance drop at high humidity
is due to the impact of humidity on the SSD IC capacitance.
Ref. [16] discovered that humidity severely hinders capacitor’s
performance. All capacitors lose capacitance at an increasing
slop, and their Equivalent Series Resistant (ESR) values climb
at high humidity. Moreover, the capacitance of MLC flash cells
is originally higher than TLC flash cells, so the impacts are
immediately more evident for MLC SSDs. However, as on-chip
DRAM cells also depend upon capacitance, so we anticipate
even TLC SSDs may be impacted upon prolonged exposure.

Finally, we simulate the conditions of sudden temperature
drop in case of climate control system failure. Temperature
decrement shows a lower bandwidth for TLC SSDs. Fig. 4
shows the percentage of bandwidth change while temperature
changes from 70°C to 10°C maintaining relative humidity at
80RH (Experiment ID 6 in Table II). Similar to the earlier
findings, only TLC SSDs are impacted. This time the bandwidth
suffers a high degradation ranging from 35% to 65%. When the
temperature decreases due to the reduced mobility of electrons,
distinguishing seven different threshold voltage levels becomes
more challenging for TLC SSDs.

Understanding the post-impact of exposure to any environ-
mental condition is important as this would be the lasting
performance of SSD even at normal environment conditions
later. SSD tail latencies showed negative post-impact when
exposed to high humidity. To observe the post-impacts of

(a) TLC and MLC (b) TLC

Fig. 5. Post-impacts to SSD tail latency after exposure to (a) high humidity
and (b) high temperature.
the environmental changes, we conduct sequences Experiment
IDs 7 and 8 (Table II). We expose SSDs to high humidity
(80RH) for six hours. Then, to analyze the post-impacts, we
compare the performance of SSDs over six hours prior to
increasing in humidity and six hours after exposure, at room
humidity. As we can see in Fig. 5a, the 99.99th tail latency
of TLC and MLC SSDs can degrade up to 75% and 10%
respectively. In our previous finding, we observed that high
humidity degrades the runtime performance of the SSDs. From
Fig. 5a, we find that the performance degradation is not only at
runtime, but high humidity leaves post-impact by damaging the
IC and capacitors. IC Back-End-of-Line (BEOL) components
are prone to permanently suffer from humidity penetration due
to their sole protection being a moisture-crack barrier [15].

We observed negative post-impact of high temperature
on TLC SSDs. To explore the post-impact of the temperature
changes, we perform Experiment ID 8 (Table II), where we
compare the performance at normal conditions, i.e., 22.5°C,
50RH before and after exposing the SSD to 50°C, 50RH. As
shown in Fig. 5b, we observe negative post-effects on TLC
SSDs with an increase in the tail latencies. MLC SSDs did
not show any post-impacts of increase in temperature. In the
NAND flash cell, the required tunneling for write and erase
operations degrades the thin oxide layer over time which causes
electrons to leak from the FG. We anticipate this process of
retention loss acceleration at high-temperature impacts the TLC
flash cell permanently. Increased retention loss may lead to
increased read retries and replacement of bad cells with new
cells from over-provisioned (OP) cells, causing performance
penalties [14]. As MLC flash is less sensitive to retention loss,
MLC SSDs do not show post-impact of the high temperature
after the short period of exposure. We did not observe any
post-impacts of decreasing humidity and temperature. We also
analyze the performance difference of read and write I/Os
separately. We think because of the same above-mentioned
reasons, we observed that temperature and humidity changes
impact the write I/Os more than the read I/Os. We found
that, on average, read I/Os bandwidth can degrade up to 62%
while the write I/Os bandwidth can degrade up to 85%.

Finally, we continued our long-term experiments with the
intent to let it continue until the SSD wears out by writing
more data than what is specified in the warranty sheet. To our
surprise, some SSDs running under high humidity observed
fail-stop faults much before they surpassed the write endurance
limit. We note that these failures were not observed in all
SSDs, making it difficult to predict and proactively manage
such failures. Also, any SSD which was under normal room
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Fig. 6. Summary of the impacts of temperature and humidity changes.

conditions did not show any such behavior. The SSD failures
resulted in the total loss of all the data present on the SSDs.
Upon further inspection of the logs collected until SSD was
operational, we observe that the “media wear-out” increased at
a 2x higher rate towards the end, despite the same workload.
This may be because the damaged NAND cells are rapidly
replaced by spare NAND cells of the over-provision (OP)
region until there are no new NAND cells to replace, and at that
stage, SSD fails. For temperature changes at room and lower
humidity, we do not observe any SSD failure.

We summarize our observations in Fig. 6, with temperature
on the x-axis and relative humidity on the y-axis. The intersec-
tion of axes in the plot is set at the room condition, i.e., 22.5°C
and 50RH. Due to the test chamber’s operating constraint,
we could not run any experiment in the lower-left quadrant,
i.e., low temperature-low humidity zone. All the experiment
sequences from Table II are represented using white circles.
The arrows indicate the sequence state of the experiments.
For example, 2i denotes the initial state of Experiment ID 2
(Table II), i.e., 22.5°C, 50RH and 2f denotes the final state of
Experiment ID 2 (Table II), i.e., 50°C, 50RH. The black and
white-colored arrows are for the runtime and post-impact exper-
iments, respectively. Based on the observed performance of the
SSDs in different temperature and humidity levels, we colored
the quadrants where the worst performance is represented by
red and the best performance by green. From Fig. 6, we can see
that it is safe to operate at high temperature ( 60°C) and low
humidity ( 20RH) levels as it gives higher runtime performance
with minimal post-impacts. In comparison, high humidity at
low as well as high temperature can extremely deteriorate SSD
performance and reliability.

V. CONCLUSION

This paper begins by posing a simple question for investiga-
tion: do temperature and humidity exposures hurt or benefit
your SSDs? We conclude by observing that humidity has
a severe post-impact on the tail latency of the SSD, even
when SSDs are operating under room conditions. This can
have profound implications for data center SLAs and usage
of SSDs in autonomous vehicles. The extent of the impact is
dependent on the NAND flash types of the SSDs. Additionally,
our finding shows that a small increase in temperature may be

instantaneously beneficial to the performance of SSDs, but it
may also have some minimal post impacts. In the future, we
plan to further alleviate our understanding by designing models
to capture the observed trends to simulate the performance
behaviors, exploring different real workloads, NVMe interface,
long-term impacts, and characterizing with other environmental
factors such as electromagnetic waves.
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Abstract—Key-value stores are widely used as building blocks
in today’s IT infrastructure for managing and storing large
amounts of data. Storage technologies are undergoing continuous
innovations to accelerate KV workloads. However, designing
high-performance KV or object storage devices is challenging and
still needs more research to address the performance bottlenecks
of the existing designs. There is a void for an inexpensive and
extendable research platform that enables in-depth exploration
of the index management components within the KV devices. To
fill this void, we design Modular Key-value Emulator (MoKE).
MoKE is a software emulator for fostering future full-stack
software/hardware KV and object storage device research. MoKE
is cheap (software-based emulator), usable with SNIA KV API
(supports popular host-device interfaces), extendable (supports
internal KV device research), and adaptable (QEMU-based).

Index Terms—Solid State Drive, Key-Value SSD, emulator

I. INTRODUCTION

The explosion of unstructured data has given rise to the Key-
Value (KV) and object interfaces and unstructured data stores.
However, conventional software KV/object databases confront
computational and memory overheads on the operating system
(OS) I/O stack. I/O requests need to go through multiple
layers, and each layer adds syntax translation complexity
and performance cost. Therefore, computational and memory
overheads of software KV/object stores [6], [11] have intrigued
researchers in industry and academia to explore KV/Object
Drives over the years. The proposed designs include Kinetic
Drive [8], KAML [4], KV-SSD [2], [6], [9], and KV CSD [12].
While each design is innovative, we have not seen wide-scale
adoption of such devices. Despite the low adoption of such
devices, KV- and Object-SSD retains their intrigue because of
the popularity of the KV and object interfaces, which needs
constant efforts from both academia and industry.

Research quests to design efficient KV and Object SSDs
have been challenging and expensive. Existing research works
have all been implemented either on real devices, accessible
only to manufacturers or on costly FPGA-based device proto-
types. On top of the direct cost of such devices, the learning
curve of working on FPGA-based devices is also very high.
It is not easy for most academic research labs to afford such
expensive and complex platforms. More importantly, there is
a void in terms of open-source software platforms that foster
research on the impact of individual components within KV
storage devices on the overall I/O stack. We need open-source

emulators/simulators that can enable research on the primary
bottlenecks, such as host-device interface, application data
index management, and integrated RAM caching, within KV-
SSDs and similar devices [11].

To fill this void, we present Modular Key-value Emulator
(MoKE), based on FEMU (a QEMU-based Flash Emula-
tor [10]), to foster in-depth research on KV-SSDs. MoKE
provides a complete overview of the impact of individual
internal components on the overall I/O stack.

II. MOKE: MODULAR KEY-VALUE EMULATOR

MoKE is designed on top of FEMU [10], a popular
block-SSD emulator. Like FEMU, MoKE offers a virtualized
SSD interface running inside a virtual machine on top of
QEMU [1]. In MoKE, we replace FEMU’s block-based host-
device interface with NVMe KV interface, with support for the
SNIA KV API [15]. We also replace FEMU’s data backend
and FTL emulation to enable KV data management and delay
emulation.

A. Host-Device Interface for KV Stack
The first step in designing an NVMe KV host-device

interface is to implement the NVMe KV command set [3]
into device drivers and implement KV request handlers inside
the emulator. Since, MoKE is a research platform, we inte-
grate MoKE with the more flexible OpenMPDK NVMe KV
command set and device driver [14].

1) KV Command Transfer: Problem: KV command trans-
fers are inherently different and expensive compared to their
block device counterparts and can affect I/O performance
of the device [7]. First, keys larger than 16 bytes cannot
be passed on as part of a NVMe command and requires a
separate DMA transfer using Physical Region Pages (PRP).
Secondly, additional packing and unpacking of keys can lead
to overhead in command processing. Thirdly, unlike block
devices, KV commands cannot be coalesced together based
on sequentially or key group. A real Samsung KV-SSD (not
the KV emulator) [6] uses multiple request handlers running
on different CPUs to offset these overheads. However, im-
plementing emulation of such request-handling architectures
would complicate the design and incur significant overhead. It
is challenging to correctly emulate the command processing
to match real KV-SSD’s command processing throughput.
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Fig. 1: (a) MoKE IOPS drop with increase in key size. (b) Read I/O latency in different modes. (c) Write I/O latency
in different modes. (d) Impact of queue depth on read latency.

Our Solution: To achieve correct and efficient command
processing in MoKE, we first implement separate DMA trans-
fers for keys and values based on command parameters. We
also introduce new data structures to identify and process KV
commands and to manage the KV data inside the emulator
efficiently. Approximately of 900 lines of codes (LOC) has
been added in nvme.h, nvme-io.c and bb.c to support
the feature of NVMe KV command transfer.
Results: We measure the correctness of the host-device inter-
face by comparing MoKE’s throughput trends with Samsung
KV-SSD for different key sizes. When the key sizes increase,
the I/O throughput of KV-SSD is expected to decrease [13],
due to additional DMA transfers. Figure 1a shows that MoKE
can correctly emulate this behavior.

2) KV API support: Problem: Applications interact with
KV-SSD using the standardized SNIA KV API. The KV
API library transforms the API requests into NVMe KV
commands. For SNIA KV API to work properly, a storage
device/emulator needs to implement two features - key space
management and KV I/O error handling. However, key space
is an abstraction recognized by the KV API, not the NVMe
layer. In addition, KV-specific I/O errors during a transaction
also needs to be handled by the KV API layer. The exact
method through which the API-level abstractions are recog-
nized and processed inside the KV-SSD is not trivial. For
example, the data structures that list the key spaces, some
details such as the actual keys being used or the exact NVMe
commands being used for management of key spaces are
still implementation dependent. Hence, to enable keyspace
management KV API support, we either need to reverse
engineer these implementation details (i.e. keys used to store
key space list and commands used to manage key spaces) and
modify MoKE, or implement our own solution both in the KV
API layer and in the emulator layer.
Our Solution: To enable KV API support in MoKE, we first
analyze the chain of KV API requests, their transformation in
the ADI layer, and the corresponding NVMe commands issued
to the device, starting from the initialization of the device. We
notice that the OpenMPDK KV library uses the three basic KV
read, write, and delete commands to manage the device and
key spaces instead of any admin or custom NVMe commands.
The exact KV pairs that hold the key space list are pre-defined
inside the KV API. We reverse engineer the implementation

details of these KV pairs from the OpenMPDK KV API
library. We create and insert these KV pairs in MoKE during
initialization using the reverse-engineered keys and values.
We also add support for multiple key spaces, along with
key space isolation, in MoKE. As a result of these changes,
applications can create, use or delete key spaces using the KV
API layer. Next, we add support for KV I/O error handling
by adding KV command error codes inside the emulator and
transferring the error information from emulator to KV API
using KV command context data structure. The above changes
enable both regular and benchmark applications to interact
with MoKE through the SNIA KV API.

B. Delay Emulation
Problem: The latency of an I/O operation in KV-SSD is

an accumulation of two main components - request handling
delay and data access delay. FEMU already implements a
basic delay model for data access based on single-register and
uniform page latency. However, it lacks delay emulation for
variable-length KV data and KV request handling overheads
(e.g. key hashing delay, K2P table processing delay, DMA
transfer delay). To support variable-length KV data, we need
to adapt the data backend and the FTL.

On the other hand, if we try to emulate the exact delays
caused by KV request handling overheads, it would require
frequent calls to the system clock, and may negatively influ-
ence delay emulation.
Our Solution: We modified FEMU’s data backend and
FTL to support variable-length KV data. Then, to tackle the
problem of emulating KV request handling overheads, we
consider a hybrid approach. We strive to emulate overheads in-
curred by different components in KV devices using different
methods. First, we experiment with DMA transfer delays for
large keys. Our experiments reveal that DMA transfer delays
for command transfers are included in the latency inherently,
because subsequent I/O commands are inserted into the NVMe
submission queue at a slightly slower rate. Directly adding the
DMA transfer delay to the I/O request submission time would
result in counting the delay twice. Thus, we do not add any
additional delay for the DMA transfer of large keys. Next, we
measure the processing delay of different operations, such as
key hashing and K2P table access. The average cumulative
delay of these overheads for both read and write requests
is around 4.2 and 4.4 microseconds, respectively, when the
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99th percentile tail latency is ignored. When the tail latency
is considered, the cumulative delay is about 4.8 and 16.2
microseconds for read and write requests. These measurements
indicate that the delays added by different index operations
are dependent on the type of requests (e.g., read or write or
exist). Hence, we consolidate the delays incurred by different
index operations and introduce four configurable variables
Tread, Twrite, Tdelete, and Texist to emulate the cumulative
processing delays for read, write, delete and exist requests.
These delays can be different for different index structures.
Users can set these values through empirical studies on their
own FTL implementation(s).

III. ACCURACY EVALUATION

We measure MoKE using the following configuration. We
emulate a 64GB SSD (8 channels, 8 LUNs/channel, and
16KB flash page) where latency for program, read and erase
operations are 660µs, 45µs, and 3.5ms, respectively [5]. All
experiments were performed on a machine with 2xIntel(R)
Xeon(R) Silver 4208 CPU, 192GB DDR4 DRAM, with a 1TB
SAS HDD as a backing store. OpenMPDK KVBench [14] is
used to measure MoKE’s performance (latency and through-
put) because the microbenchmark tool is compatible with
SNIA KV API and can generate realistic workloads [6], [13].
All experiments in this work use 10GB random read or write
workloads (2.6M KV pairs with 16B keys and 4KB values),
with queue depth of 1 for latency and 64 for throughput
measurements similar to industry practice.

First, we observe the I/O latency with and without flash
access delay emulation to verify if MoKE emulates delays
(or no delays) correctly (Figure 1b and 1c). Average store
and retrieve latency without delay emulation are 28.7µs and
29.5µs, respectively. This delay is added partly by the host
(KV driver, API, and KVBench itself) to process the request
and partly by MoKE (as it cannot return immediately upon
receiving the request even if the delay is set to 0). The
unintentionally added processing delays by MoKE are small
enough to be offset during actual I/O operations with (data
placement and index) delay emulation. Second, we verify
that MoKE’s read latency can scale similar to Samsung KV-
SSD, as we increase the queue depth [13]. MoKE can sustain
read latency up to 16 queue depth, but suffers at very high
queue depth due to the lack of large number of concurrent
request managers, as seen in Samsung KV-SSD (Figure 1d).
In summary, our experimental results show that MoKE is
accurate enough to be used as a platform to trigger important
emerging KV/object storage device-related research. We plan
to continue enhancing MoKE to be more scalable and easy to
use.

IV. CONCLUSIONS

MoKE is designed to fill the void of an inexpensive,
extendable KV/object-SSD research platform. MoKE will
likely foster thorough investigations related to the complex
design choices within the algorithms performed and the data
structures maintained inside the KV storage devices. Our

evaluation results show that MoKE accurately mimics the
performance trends of a real Samsung KV-SSD. We expect
that MoKE will speed up future KV-SSD research and also
enable researchers to explore other emerging directions such
as namespace isolation, KV interface-based Computational
Storage Devices (CSD), and many more.
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ABSTRACT
Key-Value Solid State Drive (KVSSD), a key addressable SSD tech-
nology, promises to simplify storage management for unstructured
data and improve system performance with minimal host-side inter-
vention. However, we �nd that the current state-of-the-art KVSSD
exhibits indexing peculiarities that limit their widespread adoption.
Through experiments, we observe that the performance degrades
as more data are stored, and the KVSSD can only store a limited
number of key-value pairs even though the amount of data stored
on the device is signi�cantly lower than its capacity. We introduce
RHIK, a recon�gurable hash-bashed indexing for KVSSD, for high
performance and high occupancy. We implement our proposed
indexing scheme on the open-source KVSSD emulator that is vali-
dated against a real KVSSD, and demonstrate its e�ectiveness using
real workload traces and synthetic microbenchmarks.
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1 MOTIVATION
Performance drops as index size increases: The hash-based
index in current KVSSD increases the tail latency and hampers
performance as the size of the index grows [2] because the index
becomes too large to �t in the SSD DRAM and optimizations from
block-SSD cannot be applied directly. This behavior is visible in
Fig. 1. Starting in Fig. 1a, KVSSD can sustain I/O performance at
a smaller index size, but as the index grows from 2 million vs. 116
million vs. 1760 million vs. 3100 million (patterned vertical lines as
shown in 1b) KVSSD’s performance collapses.
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(a) 1.83 million keys (b) 3100 million keys
Figure 1: Write bandwidth drops with increasing index size

Index supports only a limited number of keys: We observe
that KVSSD also supports only a limited number of keys compared
to its capacity. Even though Samsung KVSSD supports an unfath-
omably large keyspace (consisting of 24 + 25 + ... + 2254 + 2255:4~B),
our experiments reveal that a 3.84TB PM983 KVSSD can store a
maximum of approximately 3.1 billion KV pairs (with value lengths
of 1KB or lower). Thus, we next analyze the number of keys required
by most of the existing KV stores. The index in a 4TB KVSSD would
need to store 34 million-2.7 billion keys for a typical Baidu Atlas
KV workload [3] and 24-744 billion keys for a typical Facebook
Memcached workload [1].

2 RHIK ARCHITECTURE

Figure 2: Re-con�gurable indexing
We introduce RHIK, a reco�ngurable hash-based indexing for

KVSSD, and to the best our knowledge the �rst KVSSD design
that guarantees maximum of one �ash read for index access and
supports high index occupancy. The �rst layer in RHIK works like
a directory, containing ⇡ entries, and accessed from SSD DRAM
(Fig. 2). At the same time, a periodically updated persistent copy of
these ⇡ entries resides on �ash. The second layer, or record layer,
holds �xed-size independent hash tables that store the metadata of
corresponding KV pairs and is served from �ash unless available
in the integrated RAM. With this 2-level design, we are able to
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guarantee maximum of one �ash read per index access, something
that is almost impossible to achieve in the current state-of-the-art
multi-level hash index or LSM-tree design. In addition, RHIK has
the three other important features - e�cient collision management,
conservative index initialization and resizing, and low-overhead
membership checking.
E�cient Collision Management: RHIK employs Hopscotch
hashing to ensure better collision handling and higher transla-
tion page (i.e. NAND �ash pages storing the index records) occu-
pancy (Fig. 2). While RHIK’s collision management scheme needs
marginally more compute than existing collision handling mecha-
nism, it reduces the number of translation pages required for storing
the index.
Conservative Index Initialization and Resizing: RHIK is initial-
ized conservatively to reduce space wastage related to provisioning
a large under-utilized hash index, and resizing triggered only when
total occupancy reaches a pre-de�ned threshold (Fig. 2).
Low-overhead Membership Checking: RHIK reuses key sig-
natures for membership checking, instead of traditional Bloom
�lter-based approaches (Fig. 2). This reduces the memory footprint
and management complexity of the index.
RHIK on KV EmulatorWe develop an advanced version of the
KV Emulator by extending OpenMDK KV Emulator. The new KV
Emulator imitates the fundamental hardware primitives of an SSD,
such as �ash blocks, pages, etc. We implement RHIK in the new
KV Emulator. We implement separate indexing and data layout
schemes.

3 EVALUATION

(a) Asynchronous reads (b) Asynchronous writes
Figure 3: I/O performance comparison

(a) Cache miss ratio (b) Flash reads by index
Figure 4: RHIK incurs only one �ash read per I/O request

First, we evaluate RHIK ’s performance using multiple sequen-
tial workloads with variable key-value sizes (Fig. 3). Since the KV
Emulator is limited by host DRAM capacity, we evaluate RHIK for
100 million keys on a 64GB emulated drive. When we compare
asynchronous write performance, for almost all value sizes, RHIK
achieves higher throughput. For asynchronous read requests, we
observe that RHIK is able to perform better with large value sizes
during read. We observe that the performance trends of the nor-
malized throughput of the OpenMPDK KV Emulator di�ers from
KVSSD. We believe that this di�erence in the performance trends

may be due to the IOPS model used by the OpenMPDK KV Emu-
lator. Since, our extended KV Emulator also uses the same IOPS
model, we measure RHIK ’s performance improvements relative to
OpenMPDK KV Emulator performance. In addition, KVSSD and
RHIK both maintain un-ordered index with KV pairs written in
a log-like manner on �ash, and KV operations are largely domi-
nated by key handling operations, the performance of sequential
workloads are not signi�cantly di�erent from Uniform or Zip�an
workloads in KVSSD for most cases.

As we show in the motivation, the KVSSD performance drops
when multi-level hash index size increases due to multiple �ash
page accesses needed to read the portion of the index that doesn’t
�t within the SSD DRAM. Fig. 4 shows that the number of �ash
page accesses using RHIK is signi�cantly less compared to that
of the multi-level hash index. Particularly, here we limit the SSD
DRAM cache budget to 10MB (i.e. for a 10GB SSD) for both and we
replay the real-world IBM Cloud Object Store KV traces. Out of the
eight clusters, four clusters (i.e. 022, 026, 052, and 072) index �ts
within the SSD cache, so no di�erence between RHIK and KVSSD
is observed. However, for the rest of the clusters that have an index
size of more than 10MB, RHIK incurs only one �ash access but
multi-level hash within KVSSD may incur 3 to 7 accesses. Hence,
the performance using RHIK will not drop upon increasing index
size.

4 CONCLUSION
KVSSDs established the performance bene�ts of removing the I/O
stack redundancies for KV workloads and �nally became a com-
modity product in 2018, but it is considerably more expensive than
block SSDs. However, as we show unoptimized index management
can make the KVSSD underutilized and lower its performance to
be worst than the block SSDs. In this work, we show novel index
management along with many other features needed to achieve
sustained performance from KVSSDs even when the index size
increases.
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